Control affine systems on solvable three-dimensional Lie groups, I

Rory Biggs; Claudiu C. Remsing

Archivum Mathematicum (2013)

  • Volume: 049, Issue: 3, page 187-197
  • ISSN: 0044-8753

Abstract

top
We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV, and V in the Bianchi-Behr classification.

How to cite

top

Biggs, Rory, and Remsing, Claudiu C.. "Control affine systems on solvable three-dimensional Lie groups, I." Archivum Mathematicum 049.3 (2013): 187-197. <http://eudml.org/doc/260595>.

@article{Biggs2013,
abstract = {We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV, and V in the Bianchi-Behr classification.},
author = {Biggs, Rory, Remsing, Claudiu C.},
journal = {Archivum Mathematicum},
keywords = {left-invariant control system; (detached) feedback equivalence; affine subspace; solvable Lie algebra; left-invariant control system; (detached) feedback equivalence; affine subspace; solvable Lie algebra},
language = {eng},
number = {3},
pages = {187-197},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Control affine systems on solvable three-dimensional Lie groups, I},
url = {http://eudml.org/doc/260595},
volume = {049},
year = {2013},
}

TY - JOUR
AU - Biggs, Rory
AU - Remsing, Claudiu C.
TI - Control affine systems on solvable three-dimensional Lie groups, I
JO - Archivum Mathematicum
PY - 2013
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 049
IS - 3
SP - 187
EP - 197
AB - We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV, and V in the Bianchi-Behr classification.
LA - eng
KW - left-invariant control system; (detached) feedback equivalence; affine subspace; solvable Lie algebra; left-invariant control system; (detached) feedback equivalence; affine subspace; solvable Lie algebra
UR - http://eudml.org/doc/260595
ER -

References

top
  1. Agrachev, A. A., Sachkov, Y. L., Control Theory from the Geometric Viewpoint, Springer Verlag, 2004. (2004) Zbl1062.93001MR2062547
  2. Biggs, R., Remsing, C. C., On the equivalence of control systems on Lie groups, submitted. 
  3. Biggs, R., Remsing, C. C., A category of control systems, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 20 (1) (2012), 355–368. (2012) Zbl1274.93062MR2928428
  4. Biggs, R., Remsing, C. C., A note on the affine subspaces of three–dimensional Lie algebras, Bul. Acad. Ştiinţe Repub. Mold. Mat. no. 3 (2012), 45–52. (2012) MR3155842
  5. Biggs, R., Remsing, C. C., Control affine systems on semisimple three–dimensional Lie groups, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 59 (2) (2013), 399–414. (2013) 
  6. Biggs, R., Remsing, C. C., Control affine systems on solvable three–dimensional Lie groups, II, to appear in Note Mat. 33 (2013). (2013) Zbl1287.93022MR3178571
  7. Ha, K. Y., Lee, J. B., 10.1002/mana.200610777, Math. Nachr. 282 (6) (2009), 868–898. (2009) Zbl1172.22006MR2530885DOI10.1002/mana.200610777
  8. Harvey, A., 10.1063/1.524073, J. Math. Phys. 20 (2) (1979), 251–253. (1979) MR0519209DOI10.1063/1.524073
  9. Jakubczyk, B., Equivalence and Invariants of Nonlinear Control Systems, Nonlinear Controllability and Optimal Control (Sussmann, H. J., ed.), M. Dekker, 1990, pp. 177–218. (1990) Zbl0712.93027MR1061386
  10. Jurdjevic, V., Geometric Control Theory, Cambridge University Press, 1977. (1977) MR1425878
  11. Jurdjevic, V., Sussmann, H. J., 10.1016/0022-0396(72)90035-6, J. Differential Equations 12 (1972), 313–329. (1972) Zbl0237.93027MR0331185DOI10.1016/0022-0396(72)90035-6
  12. Knapp, A. W., Lie Groups beyond an Introduction, Progress in Mathematics, Birkhäuser, second ed., 2004. (2004) MR1399083
  13. Krasinski, A., et al.,, 10.1023/A:1022382202778, Gen. Relativity Gravitation 35 (3) (2003), 475–489. (2003) Zbl1016.83004MR1964375DOI10.1023/A:1022382202778
  14. MacCallum, M. A. H., On the Classification of the Real Four–Dimensional Lie Algebras, On Einstein's Path: Essays in Honour of E. Schücking (Harvey, A., ed.), Springer Verlag, 1999, pp. 299–317. (1999) Zbl0959.17003MR1658911
  15. Popovych, R. O., Boyco, V. M., Nesterenko, M. O., Lutfullin, M. W., 10.1088/0305-4470/36/26/309, J. Phys. A: Math. Gen. 36 (2003), 7337–7360. (2003) MR2004893DOI10.1088/0305-4470/36/26/309
  16. Remsing, C. C., Optimal control and Hamilton–Poisson formalism, Int. J. Pure Appl. Math. 59 (1) (2001), 11–17. (2001) MR2642777

NotesEmbed ?

top

You must be logged in to post comments.