Cyclic Type Fixed Point Results in 2-Menger Spaces
Binayak S. Choudhury; Samir Kumar BHANDARI; Parbati SAHA
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)
- Volume: 54, Issue: 2, page 5-20
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topChoudhury, Binayak S., BHANDARI, Samir Kumar, and SAHA, Parbati. "Cyclic Type Fixed Point Results in 2-Menger Spaces." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.2 (2015): 5-20. <http://eudml.org/doc/276178>.
@article{Choudhury2015,
abstract = {In this paper we introduce generalized cyclic contractions through $r$ number of subsets of a probabilistic 2-metric space and establish two fixed point results for such contractions. In our first theorem we use the Hadzic type $t$-norm. In another theorem we use a control function with minimum $t$-norm. Our results generalizes some existing fixed point theorem in 2-Menger spaces. The results are supported with some examples.},
author = {Choudhury, Binayak S., BHANDARI, Samir Kumar, SAHA, Parbati},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {2-Menger space; Cauchy sequence; fixed point; control function; $t$-norm},
language = {eng},
number = {2},
pages = {5-20},
publisher = {Palacký University Olomouc},
title = {Cyclic Type Fixed Point Results in 2-Menger Spaces},
url = {http://eudml.org/doc/276178},
volume = {54},
year = {2015},
}
TY - JOUR
AU - Choudhury, Binayak S.
AU - BHANDARI, Samir Kumar
AU - SAHA, Parbati
TI - Cyclic Type Fixed Point Results in 2-Menger Spaces
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 2
SP - 5
EP - 20
AB - In this paper we introduce generalized cyclic contractions through $r$ number of subsets of a probabilistic 2-metric space and establish two fixed point results for such contractions. In our first theorem we use the Hadzic type $t$-norm. In another theorem we use a control function with minimum $t$-norm. Our results generalizes some existing fixed point theorem in 2-Menger spaces. The results are supported with some examples.
LA - eng
KW - 2-Menger space; Cauchy sequence; fixed point; control function; $t$-norm
UR - http://eudml.org/doc/276178
ER -
References
top- Banach, S., 10.4064/fm-3-1-133-181, Fundamenta Mathematicae 3 (1922), 133–181. (1922) DOI10.4064/fm-3-1-133-181
- Choudhury, B. S., Das, K. P., 10.1007/s10114-007-6509-x, Acta Mathematica Sinica, English Series 24 (2008), 1379–1386. (2008) Zbl1155.54026MR2438308DOI10.1007/s10114-007-6509-x
- Choudhury, B. S., Dutta, P. N., Das, K. P., 10.1007/s10474-008-7242-3, Acta. Math. Hungar. 122 (2008), 203–216. (2008) MR2480861DOI10.1007/s10474-008-7242-3
- Choudhury, B. S., Das, K. P., 10.1016/j.chaos.2009.04.020, Chaos, Solitons and Fractals 42 (2009), 3058–3063. (2009) Zbl1198.54072MR2560014DOI10.1016/j.chaos.2009.04.020
- Choudhury, B. S., Das, K. P., Bhandari, S. K., A fixed point theorem for Kannan type mappings in 2-Menger spaces using a control function, Bulletin of Mathematical Analysis and Applications 3 (2011), 141–148. (2011) MR2955353
- Choudhury, B. S., Das, K. P., Bhandari, S. K., Fixed point theorem for mappings with cyclic contraction in Menger spaces, Int. J. Pure Appl. Sci. Technol. 4 (2011), 1–9. (2011)
- Choudhury, B. S., Das, K. P., Bhandari, S. K., A Generalized cyclic C-contraction priniple in Menger spaces using a control function, Int. J. Appl. Math. 24, 5 (2011), 663–673. (2011) MR2931524
- Choudhury, B. S., Das, K. P., Bhandari, S. K., A fixed point theorem in 2-Menger space using a control function, Bull. Cal. Math. Soc. 104, 1 (2012), 21–30. (2012) MR3088824
- Choudhury, B. S., Das, K. P., Bhandari, S. K., Two Ciric type probabilistic fixed point theorems for discontinuous mappings, International Electronic Journal of Pure and Applied Mathematics 5, 3 (2012), 111–126. (2012) MR3016126
- Choudhury, B. S., Das, K. P., Bhandari, S. K., Cyclic contraction result in 2-Menger space, Bull. Int. Math. Virtual Inst. 2 (2012), 223–234. (2012) MR3159041
- Choudhury, B. S., Das, K. P., Bhandari, S. K., Generalized cyclic contraction in Menger spaces using a control function, Rev. Bull. Cal. Math. Soc. 20, 1 (2012), 35–42. (2012)
- Choudhury, B. S., Das, K. P., Bhandari, S. K., Cyclic contraction of Kannan type mappings in generalized Menger space using a control function, Azerbaijan Journal of Mathematics 2, 2 (2012), 43–55. (2012) MR2967294
- Choudhury, B. S., Das, K. P., Bhandari, S. K., Fixed points of p-cyclic Kannan type contractions in probabilistic spaces, J. Math. Comput. Sci. 2 (2012), 565–583. (2012) MR2929240
- Dutta, P. N., Choudhury, B. S., Das, K. P., Some fixed point results in Menger spaces using a control function, Surveys in Mathematics and its Applications 4 (2009), 41–52. (2009) Zbl1180.54054MR2485791
- Gähler, S., 10.1002/mana.19630260109, Math. Nachr. 26 (1963), 115–148. (1963) MR0162224DOI10.1002/mana.19630260109
- Gähler, S., 10.1002/mana.19640280309, Math. Nachr. 28 (1965), 235–244. (1965) DOI10.1002/mana.19640280309
- Fernandez-Leon, A., 10.1016/j.na.2010.04.005, Nonlinear Analysis 73 (2010), 915–921. (2010) Zbl1196.54050MR2653759DOI10.1016/j.na.2010.04.005
- Golet, I., A fixed point theorems in probabilistic 2-metric spaces, Sem. Math. Phys. Inst. Polit. Timisoara (1988), 21–26. (1988)
- Hadžić, O., A fixed point theorem for multivalued mappings in 2-menger spaces, Univ. Novi Sad, Zb. Rad. Prirod., Mat. Fak., Ser. Mat. 24 (1994), 1–7. (1994) Zbl0897.54036MR1413932
- Hadžić, O., Pap, E., Fixed Point Theory in Probabilistic Metric Spaces, Mathematics and Its Applications 536, Springer Netherlands, New York–Heidelberg–Berlin, 2001. (2001) MR1896451
- Iseki, K., Fixed point theorems in 2-metric space, Math. Sem. Notes, Kobe Univ. 3 (1975), 133–136. (1975) MR0415596
- Khan, M. S., On the convergence of sequences of fixed points in 2-metric spaces, Indian J. Pure Appl. Math. 10 (1979), 1062–1067. (1979) Zbl0417.54020MR0547888
- Karpagam, S., Agrawal, S., 10.1016/j.na.2010.07.026, Nonlinear Analysis 74 (2011), 1040–1046. (2011) Zbl1206.54047MR2746787DOI10.1016/j.na.2010.07.026
- Khan, M. S., Swaleh, M., Sessa, S., 10.1017/S0004972700001659, Bull. Austral. Math. Soc. 30 (1984), 1–9. (1984) Zbl0553.54023MR0753555DOI10.1017/S0004972700001659
- Kirk, W. A., Srinivasan, P. S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theorys 4 (2003), 79–89. (2003) Zbl1052.54032MR2031823
- Lal, S. N., Singh, A. K., 10.1017/S0004972700007887, Bull. Austral. Math. Soc. 18 (1978), 137–143. (1978) Zbl0385.54028MR0645161DOI10.1017/S0004972700007887
- Mihet, D., 10.1016/j.na.2009.01.107, Nonlinear Analysis 71 (2009), 2734–2738. (2009) Zbl1176.54034MR2532798DOI10.1016/j.na.2009.01.107
- Naidu, S. V. R., Prasad, J. R., Fixed point theorems in metric, 2-metric and normed linear spaces, Indian J. Pure Appl. Math 17 (1986), 602–612. (1986) Zbl0584.54042MR0844195
- Naidu, S. V. R., Prasad, J. R., Fixed point theorems in 2-metric spaces, Indian J. Pure Appl. Math 17 (1986), 974–993. (1986) Zbl0592.54049MR0856334
- Naidu, S. V. R., 10.1155/S016117120101064X, Int. J. Math. Math. Sci. 28, 11 (2001), 625–638. (2001) Zbl1001.47037MR1892319DOI10.1155/S016117120101064X
- Naidu, S. V. R., 10.1023/A:1022991929004, Czechoslovak Math. J. 53 (2003), 205–212. (2003) Zbl1013.54011MR1962009DOI10.1023/A:1022991929004
- Rhoades, B. E., 10.1002/mana.19790910112, Math. Nachr. 91 (1979), 151–155. (1979) MR0563606DOI10.1002/mana.19790910112
- Sastry, K. P. R., Babu, G. V. R., Some fixed point theorems by altering distances between the points, Indian J. Pure. Appl. Math. 30, 6 (1999), 641–647. (1999) Zbl0938.47044MR1701042
- Sastry, K. P. R., Naidu, S. V. R., Babu, G. V. R., Naidu, G. A., Generalisation of common fixed point theorems for weakly commuting maps by altering distances, Tamkang Journal of Mathematics 31, 3 (2000), 243–250. (2000) MR1778222
- Schweizer, B., Sklar, A., Probabilistic Metric Spaces, Elsevier, North-Holland, New York, 1983. (1983) Zbl0546.60010MR0790314
- Sehgal, V. M., Bharucha-Reid, A. T., 10.1007/BF01706080, Math. Sys. Theory 6, 2 (1972), 97–100. (1972) MR0310858DOI10.1007/BF01706080
- Sharma, A. K., A note on fixed points in 2-metric spaces, Indian J. Pure Appl. Math. 11 (1980), 1580–1583. (1980) Zbl0448.54049MR0617834
- Chang, S.-S., Huang, N.-J., On generalized 2-metric spaces and probabilistic 2-metric spaces, with applications to fixed point theory, Math. Jap. 34, 6 (1989), 885–900. (1989) MR1025044
- Shi, Y., Ren, L., Wang, X., 10.1007/BF02936092, J. Appl. Math. Computing 13 (2003), 277–286. (2003) Zbl1060.47057MR2000215DOI10.1007/BF02936092
- Singh, S. L., Talwar, R., Zeng, W.-Z., Common fixed point theorems in 2-menger spaces and applications, Math. Student 63 (1994), 74–80. (1994) Zbl0878.54040MR1292372
- Vetro, C., 10.1016/j.na.2010.06.008, Nonlinear Analysis 73 (2010), 2283–2291. (2010) Zbl1229.54066MR2674204DOI10.1016/j.na.2010.06.008
- Zeng, W.-Z., Probabilistic 2-metric spaces, J. Math. Research Expo. 2 (1987), 241–245. (1987) MR0929343
- Wlodarczyk, K., Plebaniak, R., Banach, A., 10.1016/j.na.2008.04.037, Nonlinear Analysis 70 (2009), 3332–3341. (2009) Zbl1171.54311MR2503079DOI10.1016/j.na.2008.04.037
- Wlodarczyk, K., Plebaniak, R., Obczyński, C., 10.1016/j.na.2009.07.024, Nonlinear Analysis 72 (2010), 794–805. (2010) Zbl1185.54020MR2579346DOI10.1016/j.na.2009.07.024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.