Cyclic Type Fixed Point Results in 2-Menger Spaces

Binayak S. Choudhury; Samir Kumar BHANDARI; Parbati SAHA

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)

  • Volume: 54, Issue: 2, page 5-20
  • ISSN: 0231-9721

Abstract

top
In this paper we introduce generalized cyclic contractions through r number of subsets of a probabilistic 2-metric space and establish two fixed point results for such contractions. In our first theorem we use the Hadzic type t -norm. In another theorem we use a control function with minimum t -norm. Our results generalizes some existing fixed point theorem in 2-Menger spaces. The results are supported with some examples.

How to cite

top

Choudhury, Binayak S., BHANDARI, Samir Kumar, and SAHA, Parbati. "Cyclic Type Fixed Point Results in 2-Menger Spaces." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.2 (2015): 5-20. <http://eudml.org/doc/276178>.

@article{Choudhury2015,
abstract = {In this paper we introduce generalized cyclic contractions through $r$ number of subsets of a probabilistic 2-metric space and establish two fixed point results for such contractions. In our first theorem we use the Hadzic type $t$-norm. In another theorem we use a control function with minimum $t$-norm. Our results generalizes some existing fixed point theorem in 2-Menger spaces. The results are supported with some examples.},
author = {Choudhury, Binayak S., BHANDARI, Samir Kumar, SAHA, Parbati},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {2-Menger space; Cauchy sequence; fixed point; control function; $t$-norm},
language = {eng},
number = {2},
pages = {5-20},
publisher = {Palacký University Olomouc},
title = {Cyclic Type Fixed Point Results in 2-Menger Spaces},
url = {http://eudml.org/doc/276178},
volume = {54},
year = {2015},
}

TY - JOUR
AU - Choudhury, Binayak S.
AU - BHANDARI, Samir Kumar
AU - SAHA, Parbati
TI - Cyclic Type Fixed Point Results in 2-Menger Spaces
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 2
SP - 5
EP - 20
AB - In this paper we introduce generalized cyclic contractions through $r$ number of subsets of a probabilistic 2-metric space and establish two fixed point results for such contractions. In our first theorem we use the Hadzic type $t$-norm. In another theorem we use a control function with minimum $t$-norm. Our results generalizes some existing fixed point theorem in 2-Menger spaces. The results are supported with some examples.
LA - eng
KW - 2-Menger space; Cauchy sequence; fixed point; control function; $t$-norm
UR - http://eudml.org/doc/276178
ER -

References

top
  1. Banach, S., 10.4064/fm-3-1-133-181, Fundamenta Mathematicae 3 (1922), 133–181. (1922) DOI10.4064/fm-3-1-133-181
  2. Choudhury, B. S., Das, K. P., 10.1007/s10114-007-6509-x, Acta Mathematica Sinica, English Series 24 (2008), 1379–1386. (2008) Zbl1155.54026MR2438308DOI10.1007/s10114-007-6509-x
  3. Choudhury, B. S., Dutta, P. N., Das, K. P., 10.1007/s10474-008-7242-3, Acta. Math. Hungar. 122 (2008), 203–216. (2008) MR2480861DOI10.1007/s10474-008-7242-3
  4. Choudhury, B. S., Das, K. P., 10.1016/j.chaos.2009.04.020, Chaos, Solitons and Fractals 42 (2009), 3058–3063. (2009) Zbl1198.54072MR2560014DOI10.1016/j.chaos.2009.04.020
  5. Choudhury, B. S., Das, K. P., Bhandari, S. K., A fixed point theorem for Kannan type mappings in 2-Menger spaces using a control function, Bulletin of Mathematical Analysis and Applications 3 (2011), 141–148. (2011) MR2955353
  6. Choudhury, B. S., Das, K. P., Bhandari, S. K., Fixed point theorem for mappings with cyclic contraction in Menger spaces, Int. J. Pure Appl. Sci. Technol. 4 (2011), 1–9. (2011) 
  7. Choudhury, B. S., Das, K. P., Bhandari, S. K., A Generalized cyclic C-contraction priniple in Menger spaces using a control function, Int. J. Appl. Math. 24, 5 (2011), 663–673. (2011) MR2931524
  8. Choudhury, B. S., Das, K. P., Bhandari, S. K., A fixed point theorem in 2-Menger space using a control function, Bull. Cal. Math. Soc. 104, 1 (2012), 21–30. (2012) MR3088824
  9. Choudhury, B. S., Das, K. P., Bhandari, S. K., Two Ciric type probabilistic fixed point theorems for discontinuous mappings, International Electronic Journal of Pure and Applied Mathematics 5, 3 (2012), 111–126. (2012) MR3016126
  10. Choudhury, B. S., Das, K. P., Bhandari, S. K., Cyclic contraction result in 2-Menger space, Bull. Int. Math. Virtual Inst. 2 (2012), 223–234. (2012) MR3159041
  11. Choudhury, B. S., Das, K. P., Bhandari, S. K., Generalized cyclic contraction in Menger spaces using a control function, Rev. Bull. Cal. Math. Soc. 20, 1 (2012), 35–42. (2012) 
  12. Choudhury, B. S., Das, K. P., Bhandari, S. K., Cyclic contraction of Kannan type mappings in generalized Menger space using a control function, Azerbaijan Journal of Mathematics 2, 2 (2012), 43–55. (2012) MR2967294
  13. Choudhury, B. S., Das, K. P., Bhandari, S. K., Fixed points of p-cyclic Kannan type contractions in probabilistic spaces, J. Math. Comput. Sci. 2 (2012), 565–583. (2012) MR2929240
  14. Dutta, P. N., Choudhury, B. S., Das, K. P., Some fixed point results in Menger spaces using a control function, Surveys in Mathematics and its Applications 4 (2009), 41–52. (2009) Zbl1180.54054MR2485791
  15. Gähler, S., 10.1002/mana.19630260109, Math. Nachr. 26 (1963), 115–148. (1963) MR0162224DOI10.1002/mana.19630260109
  16. Gähler, S., 10.1002/mana.19640280309, Math. Nachr. 28 (1965), 235–244. (1965) DOI10.1002/mana.19640280309
  17. Fernandez-Leon, A., 10.1016/j.na.2010.04.005, Nonlinear Analysis 73 (2010), 915–921. (2010) Zbl1196.54050MR2653759DOI10.1016/j.na.2010.04.005
  18. Golet, I., A fixed point theorems in probabilistic 2-metric spaces, Sem. Math. Phys. Inst. Polit. Timisoara (1988), 21–26. (1988) 
  19. Hadžić, O., A fixed point theorem for multivalued mappings in 2-menger spaces, Univ. Novi Sad, Zb. Rad. Prirod., Mat. Fak., Ser. Mat. 24 (1994), 1–7. (1994) Zbl0897.54036MR1413932
  20. Hadžić, O., Pap, E., Fixed Point Theory in Probabilistic Metric Spaces, Mathematics and Its Applications 536, Springer Netherlands, New York–Heidelberg–Berlin, 2001. (2001) MR1896451
  21. Iseki, K., Fixed point theorems in 2-metric space, Math. Sem. Notes, Kobe Univ. 3 (1975), 133–136. (1975) MR0415596
  22. Khan, M. S., On the convergence of sequences of fixed points in 2-metric spaces, Indian J. Pure Appl. Math. 10 (1979), 1062–1067. (1979) Zbl0417.54020MR0547888
  23. Karpagam, S., Agrawal, S., 10.1016/j.na.2010.07.026, Nonlinear Analysis 74 (2011), 1040–1046. (2011) Zbl1206.54047MR2746787DOI10.1016/j.na.2010.07.026
  24. Khan, M. S., Swaleh, M., Sessa, S., 10.1017/S0004972700001659, Bull. Austral. Math. Soc. 30 (1984), 1–9. (1984) Zbl0553.54023MR0753555DOI10.1017/S0004972700001659
  25. Kirk, W. A., Srinivasan, P. S., Veeramani, P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theorys 4 (2003), 79–89. (2003) Zbl1052.54032MR2031823
  26. Lal, S. N., Singh, A. K., 10.1017/S0004972700007887, Bull. Austral. Math. Soc. 18 (1978), 137–143. (1978) Zbl0385.54028MR0645161DOI10.1017/S0004972700007887
  27. Mihet, D., 10.1016/j.na.2009.01.107, Nonlinear Analysis 71 (2009), 2734–2738. (2009) Zbl1176.54034MR2532798DOI10.1016/j.na.2009.01.107
  28. Naidu, S. V. R., Prasad, J. R., Fixed point theorems in metric, 2-metric and normed linear spaces, Indian J. Pure Appl. Math 17 (1986), 602–612. (1986) Zbl0584.54042MR0844195
  29. Naidu, S. V. R., Prasad, J. R., Fixed point theorems in 2-metric spaces, Indian J. Pure Appl. Math 17 (1986), 974–993. (1986) Zbl0592.54049MR0856334
  30. Naidu, S. V. R., 10.1155/S016117120101064X, Int. J. Math. Math. Sci. 28, 11 (2001), 625–638. (2001) Zbl1001.47037MR1892319DOI10.1155/S016117120101064X
  31. Naidu, S. V. R., 10.1023/A:1022991929004, Czechoslovak Math. J. 53 (2003), 205–212. (2003) Zbl1013.54011MR1962009DOI10.1023/A:1022991929004
  32. Rhoades, B. E., 10.1002/mana.19790910112, Math. Nachr. 91 (1979), 151–155. (1979) MR0563606DOI10.1002/mana.19790910112
  33. Sastry, K. P. R., Babu, G. V. R., Some fixed point theorems by altering distances between the points, Indian J. Pure. Appl. Math. 30, 6 (1999), 641–647. (1999) Zbl0938.47044MR1701042
  34. Sastry, K. P. R., Naidu, S. V. R., Babu, G. V. R., Naidu, G. A., Generalisation of common fixed point theorems for weakly commuting maps by altering distances, Tamkang Journal of Mathematics 31, 3 (2000), 243–250. (2000) MR1778222
  35. Schweizer, B., Sklar, A., Probabilistic Metric Spaces, Elsevier, North-Holland, New York, 1983. (1983) Zbl0546.60010MR0790314
  36. Sehgal, V. M., Bharucha-Reid, A. T., 10.1007/BF01706080, Math. Sys. Theory 6, 2 (1972), 97–100. (1972) MR0310858DOI10.1007/BF01706080
  37. Sharma, A. K., A note on fixed points in 2-metric spaces, Indian J. Pure Appl. Math. 11 (1980), 1580–1583. (1980) Zbl0448.54049MR0617834
  38. Chang, S.-S., Huang, N.-J., On generalized 2-metric spaces and probabilistic 2-metric spaces, with applications to fixed point theory, Math. Jap. 34, 6 (1989), 885–900. (1989) MR1025044
  39. Shi, Y., Ren, L., Wang, X., 10.1007/BF02936092, J. Appl. Math. Computing 13 (2003), 277–286. (2003) Zbl1060.47057MR2000215DOI10.1007/BF02936092
  40. Singh, S. L., Talwar, R., Zeng, W.-Z., Common fixed point theorems in 2-menger spaces and applications, Math. Student 63 (1994), 74–80. (1994) Zbl0878.54040MR1292372
  41. Vetro, C., 10.1016/j.na.2010.06.008, Nonlinear Analysis 73 (2010), 2283–2291. (2010) Zbl1229.54066MR2674204DOI10.1016/j.na.2010.06.008
  42. Zeng, W.-Z., Probabilistic 2-metric spaces, J. Math. Research Expo. 2 (1987), 241–245. (1987) MR0929343
  43. Wlodarczyk, K., Plebaniak, R., Banach, A., 10.1016/j.na.2008.04.037, Nonlinear Analysis 70 (2009), 3332–3341. (2009) Zbl1171.54311MR2503079DOI10.1016/j.na.2008.04.037
  44. Wlodarczyk, K., Plebaniak, R., Obczyński, C., 10.1016/j.na.2009.07.024, Nonlinear Analysis 72 (2010), 794–805. (2010) Zbl1185.54020MR2579346DOI10.1016/j.na.2009.07.024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.