Displaying similar documents to “Cyclic Type Fixed Point Results in 2-Menger Spaces”

Kannan-type cyclic contraction results in 2 -Menger space

Binayak S. Choudhury, Samir Kumar BHANDARI (2016)

Mathematica Bohemica

Similarity:

In this paper we establish Kannan-type cyclic contraction results in probabilistic 2-metric spaces. We use two different types of t -norm in our theorems. In our first theorem we use a Hadzic-type t -norm. We use the minimum t -norm in our second theorem. We prove our second theorem by different arguments than the first theorem. A control function is used in our second theorem. These results generalize some existing results in probabilistic 2-metric spaces. Our results are illustrated with...

On the Rockafellar theorem for Φ γ ( · , · ) -monotone multifunctions

S. Rolewicz (2006)

Studia Mathematica

Similarity:

Let X be an arbitrary set, and γ: X × X → ℝ any function. Let Φ be a family of real-valued functions defined on X. Let Γ : X 2 Φ be a cyclic Φ γ ( · , · ) -monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function f: X → ℝ such that Γ is contained in the Φ γ ( · , · ) -subdifferential of f, Γ ( x ) Φ γ ( · , · ) f | x .

Resolving sets of directed Cayley graphs for the direct product of cyclic groups

Demelash Ashagrie Mengesha, Tomáš Vetrík (2019)

Czechoslovak Mathematical Journal

Similarity:

A directed Cayley graph C ( Γ , X ) is specified by a group Γ and an identity-free generating set X for this group. Vertices of C ( Γ , X ) are elements of Γ and there is a directed edge from the vertex u to the vertex v in C ( Γ , X ) if and only if there is a generator x X such that u x = v . We study graphs C ( Γ , X ) for the direct product Z m × Z n of two cyclic groups Z m and Z n , and the generating set X = { ( 0 , 1 ) , ( 1 , 0 ) , ( 2 , 0 ) , , ( p , 0 ) } . We present resolving sets which yield upper bounds on the metric dimension of these graphs for p = 2 and 3 .

On the unit group of a semisimple group algebra 𝔽 q S L ( 2 , 5 )

Rajendra K. Sharma, Gaurav Mittal (2022)

Mathematica Bohemica

Similarity:

We give the characterization of the unit group of 𝔽 q S L ( 2 , 5 ) , where 𝔽 q is a finite field with q = p k elements for prime p > 5 , and S L ( 2 , 5 ) denotes the special linear group of 2 × 2 matrices having determinant 1 over the cyclic group 5 .

Bicrossed products of generalized Taft algebra and group algebras

Dingguo Wang, Xiangdong Cheng, Daowei Lu (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group generated by a set of finite order elements. We prove that any bicrossed product H m , d ( q ) k [ G ] between the generalized Taft algebra H m , d ( q ) and group algebra k [ G ] is actually the smash product H m , d ( q ) k [ G ] . Then we show that the classification of these smash products could be reduced to the description of the group automorphisms of G . As an application, the classification of H m , d ( q ) k [ C n 1 × C n 2 ] is completely presented by generators and relations, where C n denotes the n -cyclic group.

Ramification in quartic cyclic number fields K generated by x 4 + p x 2 + p

Julio Pérez-Hernández, Mario Pineda-Ruelas (2021)

Mathematica Bohemica

Similarity:

If K is the splitting field of the polynomial f ( x ) = x 4 + p x 2 + p and p is a rational prime of the form 4 + n 2 , we give appropriate generators of K to obtain the explicit factorization of the ideal q 𝒪 K , where q is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.

Realizable Galois module classes over the group ring for non abelian extensions

Nigel P. Byott, Bouchaïb Sodaïgui (2013)

Annales de l’institut Fourier

Similarity:

Given an algebraic number field k and a finite group Γ , we write ( O k [ Γ ] ) for the subset of the locally free classgroup Cl ( O k [ Γ ] ) consisting of the classes of rings of integers O N in tame Galois extensions N / k with Gal ( N / k ) Γ . We determine ( O k [ Γ ] ) , and show it is a subgroup of Cl ( O k [ Γ ] ) by means of a description using a Stickelberger ideal and properties of some cyclic codes, when k contains a root of unity of prime order p and Γ = V C , where V is an elementary abelian group of order p r and C is a cyclic group of order m > 1 acting faithfully...

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

On the opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations

Malkhaz Ashordia (2016)

Mathematica Bohemica

Similarity:

The Cauchy problem for the system of linear generalized ordinary differential equations in the J. Kurzweil sense d x ( t ) = d A 0 ( t ) · x ( t ) + d f 0 ( t ) , x ( t 0 ) = c 0 ( t I ) with a unique solution x 0 is considered. Necessary and sufficient conditions are obtained for a sequence of the Cauchy problems d x ( t ) = d A k ( t ) · x ( t ) + d f k ( t ) , x ( t k ) = c k ( k = 1 , 2 , ) to have a unique solution x k for any sufficiently large k such that x k ( t ) x 0 ( t ) uniformly on I . Presented results are analogous to the sufficient conditions due to Z. Opial for linear ordinary differential systems....

On a generalization of a theorem of Burnside

Jiangtao Shi (2015)

Czechoslovak Mathematical Journal

Similarity:

A theorem of Burnside asserts that a finite group G is p -nilpotent if for some prime p a Sylow p -subgroup of G lies in the center of its normalizer. In this paper, let G be a finite group and p the smallest prime divisor of | G | , the order of G . Let P Syl p ( G ) . As a generalization of Burnside’s theorem, it is shown that if every non-cyclic p -subgroup of G is self-normalizing or normal in G then G is solvable. In particular, if P a , b | a p n - 1 = 1 , b 2 = 1 , b - 1 a b = a 1 + p n - 2 , where n 3 for p > 2 and n 4 for p = 2 , then G is p -nilpotent or p -closed. ...