Some Properties of Lorentzian α -Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection

Santu DEY; Arindam BHATTACHARYYA

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)

  • Volume: 54, Issue: 2, page 21-40
  • ISSN: 0231-9721

Abstract

top
The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian α -Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3-dimensional Lorentzian α -Sasakian manifold with respect to quarter-symmetric metric connection.

How to cite

top

DEY, Santu, and BHATTACHARYYA, Arindam. "Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.2 (2015): 21-40. <http://eudml.org/doc/276233>.

@article{DEY2015,
abstract = {The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection.},
author = {DEY, Santu, BHATTACHARYYA, Arindam},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Quarter-symmetric metric connection; Lorentzian $\alpha $-Sasakian manifold; generalized recurrent manifold; generalized Ricci-recurrent manifold; weakly symmetric manifold; weakly Ricci-symmetric manifold; semi-generalized recurrent manifold; Einstein manifold},
language = {eng},
number = {2},
pages = {21-40},
publisher = {Palacký University Olomouc},
title = {Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection},
url = {http://eudml.org/doc/276233},
volume = {54},
year = {2015},
}

TY - JOUR
AU - DEY, Santu
AU - BHATTACHARYYA, Arindam
TI - Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 2
SP - 21
EP - 40
AB - The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection.
LA - eng
KW - Quarter-symmetric metric connection; Lorentzian $\alpha $-Sasakian manifold; generalized recurrent manifold; generalized Ricci-recurrent manifold; weakly symmetric manifold; weakly Ricci-symmetric manifold; semi-generalized recurrent manifold; Einstein manifold
UR - http://eudml.org/doc/276233
ER -

References

top
  1. Chaki, M. C., On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33, 1 (1987), 53–58. (1987) Zbl0634.53012MR0925690
  2. Chaki, M. C., On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 15, 6 (1988), 526–531. (1988) Zbl0689.53011MR1028590
  3. Chaki, M. C., Some theorems on recurrent and Ricci-recurrent spaces, Rend. Sem. Math. Delta Univ. Padova 26 (1956), 168–176. (1956) Zbl0075.17501MR0084165
  4. Deszcz, R., Kowalczyk, D., 10.4064/cm97-1-2, Colloq. Math. 97, 1 (2003), 7–22. (2003) Zbl1053.53017MR2010538DOI10.4064/cm97-1-2
  5. Friedmann, A., Schouten, J. A., 10.1007/BF01187468, Math. Zeitschr. 21 (1924), 211–223. (1924) MR1544701DOI10.1007/BF01187468
  6. Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor, N.S. 29 (1975), 249–254. (1975) Zbl0308.53010MR0383275
  7. Hayden, H. A., Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27–50. (1932) MR1576150
  8. Mishra, R. S., Pandey, S. N., On quarter-symmetric metric F-connection, Tensor, N.S. 34 (1980), 1–7. (1980) MR0570556
  9. Mikeš, J., 10.1007/BF01157926, Math. Notes 28 (1981), 622–624. (1981) Zbl0454.53013DOI10.1007/BF01157926
  10. Mikeš, J., 10.1007/BF02365193, J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
  11. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic mappings and some generalizations, Palacký University, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  12. Mikeš et al., J., Differential geometry of special mappings, Palacky University, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
  13. Mikeš, J., Geodesic mappings of special Riemannian spaces, Topics in differential geometry, Vol. II, Colloq. Math. Soc. János Bolyai, Debrecen 46 (1984), North-Holland, Amsterdam. (1984) MR0933875
  14. Mikeš, J., Rachůnek, L., Torse-forming vector fields in T-semisymmetric Riemannian spaces, In: Steps in Differential Geometry. Proc. Colloq. Diff. Geometry, Univ. Debrecen, Inst. Math. and Inf., Debrecen, 2001, 219–229. (2001) Zbl0994.53009MR1859300
  15. Mikeš, J., Rachůnek, L., T-semisymmetric spaces and concircular vector fields, Rend. Circ. Mat. Palermo, II. Suppl. 69 (2002), 187–193. (2002) Zbl1023.53014MR1972434
  16. Mukhopadhyay, S., Roy, A. K., Barua, B., Some properties of a quartersymmetric metric connection on a Riemannian manifold, Soochow J. Math. 17 (1991), 205–211. (1991) MR1143507
  17. Patterson, K. M., 10.1112/jlms/s1-27.3.287, London Math. Soc. 27 (1952), 287–295. (1952) MR0048891DOI10.1112/jlms/s1-27.3.287
  18. Prakash, N., A note on Ricci-recurrent and recurrent spaces, Bulletin of the Calcutta Mathematical Society 54 (1962), 1–7. (1962) MR0148007
  19. Prasad, B., On semi-generalized recurrent manifold, Mathematica Balkanica, New series 14 (2000), 77–82. (2000) Zbl1229.53020MR1818271
  20. Prakashs, D. G., Bagewadi, C. S., Basavarajappa, N. S., On pseudosymmetric Lorentzian α -Sasakian manifolds, IJPAM 48, 1 (2008), 57–65. (2008) MR2456434
  21. Khan, Q., On generalized recurrent Sasakian manifolds, Kyungpook Math. J. 44 (2004), 167–172. (2004) Zbl1086.53064MR2064777
  22. Rastogi, S. C., On quarter-symmetric connection, C. R. Acad. Sci. Bulgar 31 (1978), 811–814. (1978) MR0522544
  23. Rastogi, S. C., On quarter-symmetric metric connection, Tensor 44 (1987), 133–141. (1987) MR0944894
  24. Ruse, H. S., 10.1112/plms/s2-53.3.212, London Math. Soc. 53 (1951), 212–229. (1951) Zbl0045.43001MR0043536DOI10.1112/plms/s2-53.3.212
  25. Rachůnek, L., Mikeš, J., On tensor fields semiconjugated with torse-forming vector fields, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 44 (2005), 151–160. (2005) Zbl1092.53016MR2218574
  26. Sular, S., Some properties of a Kenmotsu manifold with a semi symmetric metric connection, Int. Electronic J. Geom. 3 (2010), 24–34. (2010) Zbl1190.53042MR2639328
  27. Tamassy, L., Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 56 (1992), 663–670. (1992) Zbl0791.53021MR1211691
  28. Tamassy, L., Binh, T. Q., On weak symmetries of Einstein and Sasakian manifolds, Tensor, N.S. 53 (1993), 140–148. (1993) Zbl0849.53038MR1455411
  29. Tripathi, M. M., On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16 (1999), 67–71. (1999) Zbl1053.53508MR1768254
  30. Tripathi, M. M., A new connection in a Riemannian manifold, Int. Electronic J. Geom. 1 (2008), 15–24. (2008) Zbl1135.53007MR2390386
  31. Tripathi, M. M., Nakkar, N., On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bull. Cal. Math. Soc. 16, 4 (2001), 323–330. (2001) MR1909351
  32. Yano, K., On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586. (1970) MR0275321
  33. Yano, K., Imai, T., Quarter-symmetric metric connections and their curvature tensors, Tensor, N.S. 38 (1982), 13–18. (1982) Zbl0504.53014MR0832619
  34. Yadav, S., Suthar, D. L., Certain derivation on Lorentzian α -Sasakian manifolds, Mathematics and Decision Science 12, 2 (2012), 1–6. (2012) MR2814463
  35. Yamaguchi, S., Matsumoto, M., On Ricci-recurrent spaces, Tensor, N.S. 19 (1968), 64–68. (1968) Zbl0168.19503MR0221430
  36. Yildiz, A., Murathan, C., On Lorentzian α -Sasakian manifolds, Kyungpook Math. J. 45 (2005), 95–103. (2005) Zbl1085.53023MR2142281
  37. Yildiz, A., Turan, M., Acet, B. F., On three dimensional Lorentzian α -Sasakian manifolds, Bull. Math. Anal. Appl. 1, 3 (2009), 90–98. (2009) Zbl1312.53071MR2578119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.