Some Properties of Lorentzian -Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection
Santu DEY; Arindam BHATTACHARYYA
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)
- Volume: 54, Issue: 2, page 21-40
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topDEY, Santu, and BHATTACHARYYA, Arindam. "Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.2 (2015): 21-40. <http://eudml.org/doc/276233>.
@article{DEY2015,
abstract = {The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection.},
author = {DEY, Santu, BHATTACHARYYA, Arindam},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Quarter-symmetric metric connection; Lorentzian $\alpha $-Sasakian manifold; generalized recurrent manifold; generalized Ricci-recurrent manifold; weakly symmetric manifold; weakly Ricci-symmetric manifold; semi-generalized recurrent manifold; Einstein manifold},
language = {eng},
number = {2},
pages = {21-40},
publisher = {Palacký University Olomouc},
title = {Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection},
url = {http://eudml.org/doc/276233},
volume = {54},
year = {2015},
}
TY - JOUR
AU - DEY, Santu
AU - BHATTACHARYYA, Arindam
TI - Some Properties of Lorentzian $\alpha $-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 2
SP - 21
EP - 40
AB - The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3-dimensional Lorentzian $\alpha $-Sasakian manifold with respect to quarter-symmetric metric connection.
LA - eng
KW - Quarter-symmetric metric connection; Lorentzian $\alpha $-Sasakian manifold; generalized recurrent manifold; generalized Ricci-recurrent manifold; weakly symmetric manifold; weakly Ricci-symmetric manifold; semi-generalized recurrent manifold; Einstein manifold
UR - http://eudml.org/doc/276233
ER -
References
top- Chaki, M. C., On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33, 1 (1987), 53–58. (1987) Zbl0634.53012MR0925690
- Chaki, M. C., On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 15, 6 (1988), 526–531. (1988) Zbl0689.53011MR1028590
- Chaki, M. C., Some theorems on recurrent and Ricci-recurrent spaces, Rend. Sem. Math. Delta Univ. Padova 26 (1956), 168–176. (1956) Zbl0075.17501MR0084165
- Deszcz, R., Kowalczyk, D., 10.4064/cm97-1-2, Colloq. Math. 97, 1 (2003), 7–22. (2003) Zbl1053.53017MR2010538DOI10.4064/cm97-1-2
- Friedmann, A., Schouten, J. A., 10.1007/BF01187468, Math. Zeitschr. 21 (1924), 211–223. (1924) MR1544701DOI10.1007/BF01187468
- Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor, N.S. 29 (1975), 249–254. (1975) Zbl0308.53010MR0383275
- Hayden, H. A., Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27–50. (1932) MR1576150
- Mishra, R. S., Pandey, S. N., On quarter-symmetric metric F-connection, Tensor, N.S. 34 (1980), 1–7. (1980) MR0570556
- Mikeš, J., 10.1007/BF01157926, Math. Notes 28 (1981), 622–624. (1981) Zbl0454.53013DOI10.1007/BF01157926
- Mikeš, J., 10.1007/BF02365193, J. Math. Sci. 78, 3 (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
- Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic mappings and some generalizations, Palacký University, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
- Mikeš et al., J., Differential geometry of special mappings, Palacky University, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
- Mikeš, J., Geodesic mappings of special Riemannian spaces, Topics in differential geometry, Vol. II, Colloq. Math. Soc. János Bolyai, Debrecen 46 (1984), North-Holland, Amsterdam. (1984) MR0933875
- Mikeš, J., Rachůnek, L., Torse-forming vector fields in T-semisymmetric Riemannian spaces, In: Steps in Differential Geometry. Proc. Colloq. Diff. Geometry, Univ. Debrecen, Inst. Math. and Inf., Debrecen, 2001, 219–229. (2001) Zbl0994.53009MR1859300
- Mikeš, J., Rachůnek, L., T-semisymmetric spaces and concircular vector fields, Rend. Circ. Mat. Palermo, II. Suppl. 69 (2002), 187–193. (2002) Zbl1023.53014MR1972434
- Mukhopadhyay, S., Roy, A. K., Barua, B., Some properties of a quartersymmetric metric connection on a Riemannian manifold, Soochow J. Math. 17 (1991), 205–211. (1991) MR1143507
- Patterson, K. M., 10.1112/jlms/s1-27.3.287, London Math. Soc. 27 (1952), 287–295. (1952) MR0048891DOI10.1112/jlms/s1-27.3.287
- Prakash, N., A note on Ricci-recurrent and recurrent spaces, Bulletin of the Calcutta Mathematical Society 54 (1962), 1–7. (1962) MR0148007
- Prasad, B., On semi-generalized recurrent manifold, Mathematica Balkanica, New series 14 (2000), 77–82. (2000) Zbl1229.53020MR1818271
- Prakashs, D. G., Bagewadi, C. S., Basavarajappa, N. S., On pseudosymmetric Lorentzian -Sasakian manifolds, IJPAM 48, 1 (2008), 57–65. (2008) MR2456434
- Khan, Q., On generalized recurrent Sasakian manifolds, Kyungpook Math. J. 44 (2004), 167–172. (2004) Zbl1086.53064MR2064777
- Rastogi, S. C., On quarter-symmetric connection, C. R. Acad. Sci. Bulgar 31 (1978), 811–814. (1978) MR0522544
- Rastogi, S. C., On quarter-symmetric metric connection, Tensor 44 (1987), 133–141. (1987) MR0944894
- Ruse, H. S., 10.1112/plms/s2-53.3.212, London Math. Soc. 53 (1951), 212–229. (1951) Zbl0045.43001MR0043536DOI10.1112/plms/s2-53.3.212
- Rachůnek, L., Mikeš, J., On tensor fields semiconjugated with torse-forming vector fields, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 44 (2005), 151–160. (2005) Zbl1092.53016MR2218574
- Sular, S., Some properties of a Kenmotsu manifold with a semi symmetric metric connection, Int. Electronic J. Geom. 3 (2010), 24–34. (2010) Zbl1190.53042MR2639328
- Tamassy, L., Binh, T. Q., On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 56 (1992), 663–670. (1992) Zbl0791.53021MR1211691
- Tamassy, L., Binh, T. Q., On weak symmetries of Einstein and Sasakian manifolds, Tensor, N.S. 53 (1993), 140–148. (1993) Zbl0849.53038MR1455411
- Tripathi, M. M., On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16 (1999), 67–71. (1999) Zbl1053.53508MR1768254
- Tripathi, M. M., A new connection in a Riemannian manifold, Int. Electronic J. Geom. 1 (2008), 15–24. (2008) Zbl1135.53007MR2390386
- Tripathi, M. M., Nakkar, N., On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bull. Cal. Math. Soc. 16, 4 (2001), 323–330. (2001) MR1909351
- Yano, K., On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586. (1970) MR0275321
- Yano, K., Imai, T., Quarter-symmetric metric connections and their curvature tensors, Tensor, N.S. 38 (1982), 13–18. (1982) Zbl0504.53014MR0832619
- Yadav, S., Suthar, D. L., Certain derivation on Lorentzian -Sasakian manifolds, Mathematics and Decision Science 12, 2 (2012), 1–6. (2012) MR2814463
- Yamaguchi, S., Matsumoto, M., On Ricci-recurrent spaces, Tensor, N.S. 19 (1968), 64–68. (1968) Zbl0168.19503MR0221430
- Yildiz, A., Murathan, C., On Lorentzian -Sasakian manifolds, Kyungpook Math. J. 45 (2005), 95–103. (2005) Zbl1085.53023MR2142281
- Yildiz, A., Turan, M., Acet, B. F., On three dimensional Lorentzian -Sasakian manifolds, Bull. Math. Anal. Appl. 1, 3 (2009), 90–98. (2009) Zbl1312.53071MR2578119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.