On tensor fields semiconjugated with torse-forming vector fields

Lukáš Rachůnek; Josef Mikeš

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2005)

  • Volume: 44, Issue: 1, page 151-160
  • ISSN: 0231-9721

Abstract

top
The paper deals with tensor fields which are semiconjugated with torse-forming vector fields. The existence results for semitorse-forming vector fields and for convergent vector fields are proved.

How to cite

top

Rachůnek, Lukáš, and Mikeš, Josef. "On tensor fields semiconjugated with torse-forming vector fields." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44.1 (2005): 151-160. <http://eudml.org/doc/32444>.

@article{Rachůnek2005,
abstract = {The paper deals with tensor fields which are semiconjugated with torse-forming vector fields. The existence results for semitorse-forming vector fields and for convergent vector fields are proved.},
author = {Rachůnek, Lukáš, Mikeš, Josef},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {torse-forming vector fields; Riemannian space; semisymmetric space; $T$-semisymmetric space; Torse-forming vector fields; Riemannian space; semisymmetric space; T-semisymmetric space},
language = {eng},
number = {1},
pages = {151-160},
publisher = {Palacký University Olomouc},
title = {On tensor fields semiconjugated with torse-forming vector fields},
url = {http://eudml.org/doc/32444},
volume = {44},
year = {2005},
}

TY - JOUR
AU - Rachůnek, Lukáš
AU - Mikeš, Josef
TI - On tensor fields semiconjugated with torse-forming vector fields
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2005
PB - Palacký University Olomouc
VL - 44
IS - 1
SP - 151
EP - 160
AB - The paper deals with tensor fields which are semiconjugated with torse-forming vector fields. The existence results for semitorse-forming vector fields and for convergent vector fields are proved.
LA - eng
KW - torse-forming vector fields; Riemannian space; semisymmetric space; $T$-semisymmetric space; Torse-forming vector fields; Riemannian space; semisymmetric space; T-semisymmetric space
UR - http://eudml.org/doc/32444
ER -

References

top
  1. Kowolik J., On some Riemannian manifolds admitting torse-forming vector fields, Dem. Math. 18, 3 (1985), 885–891. (1985) MR0836831
  2. Mikeš J., Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. New York 78, 3 (1996), 311–333. (1996) Zbl0866.53028MR1384327
  3. Mikeš J., Geodesic Ricci mappings of two-symmetric Riemann spaces, Math. Notes 28 (1981), 622–624. (1981) Zbl0454.53013
  4. Mikeš J., Rachůnek L., T -semisymmetric spaces and concircular vector fields, Supplemento ai Rendiconti del Circolo Matematico di Palermo, II. Ser. 69 (2002), 187–193. (193.) MR1972434
  5. Rachůnek L., Mikeš J., Torse-forming vector fields in T -semisymmetric Riemannian spaces, Steps in differential geometry. Proceedings of the colloquium on differential geometry, Debrecen, Hungary, July 25–30, 2000. Univ. Debrecen, Institute of Mathematics and Informatics, 2001, 219–229. Zbl0994.53009MR1859300
  6. Rachůnek L., Mikeš J., On semitorse-forming vector fields, 3rd International Conference APLIMAT 2004, Bratislava, 835–840. 
  7. Roter W., On a class of conformally recurrent manifolds, Tensor N. S. 39 (1982), 207–217. (1982) Zbl0518.53018MR0836937
  8. Yano K., On torse-forming directions in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944), 701–705. (1944) MR0014778

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.