Some issues of fuzzy querying in relational databases

Miroslav Hudec; Miljan Vučetić

Kybernetika (2015)

  • Volume: 51, Issue: 6, page 994-1022
  • ISSN: 0023-5954

Abstract

top
Fuzzy logic has been used for flexible database querying for more than 30 years. This paper examines some of the issues of flexible querying which seem to have potential for further research and development from theoretical and practical points of view. More precisely, defining appropriate fuzzy sets for queries, calculating matching degrees for commutative and non-commutative query conditions, preferences, merging constraints and wishes, empty and overabundant answers, and views on practical realizations are discussed in this paper. Suggestions how to solve them and integrate into one compact solution are also outlined in this paper.

How to cite

top

Hudec, Miroslav, and Vučetić, Miljan. "Some issues of fuzzy querying in relational databases." Kybernetika 51.6 (2015): 994-1022. <http://eudml.org/doc/276236>.

@article{Hudec2015,
abstract = {Fuzzy logic has been used for flexible database querying for more than 30 years. This paper examines some of the issues of flexible querying which seem to have potential for further research and development from theoretical and practical points of view. More precisely, defining appropriate fuzzy sets for queries, calculating matching degrees for commutative and non-commutative query conditions, preferences, merging constraints and wishes, empty and overabundant answers, and views on practical realizations are discussed in this paper. Suggestions how to solve them and integrate into one compact solution are also outlined in this paper.},
author = {Hudec, Miroslav, Vučetić, Miljan},
journal = {Kybernetika},
keywords = {membership functions; aggregation functions; preferences; commutative queries; non-commutative queries; empty and overabundant answers; application},
language = {eng},
number = {6},
pages = {994-1022},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Some issues of fuzzy querying in relational databases},
url = {http://eudml.org/doc/276236},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Hudec, Miroslav
AU - Vučetić, Miljan
TI - Some issues of fuzzy querying in relational databases
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 994
EP - 1022
AB - Fuzzy logic has been used for flexible database querying for more than 30 years. This paper examines some of the issues of flexible querying which seem to have potential for further research and development from theoretical and practical points of view. More precisely, defining appropriate fuzzy sets for queries, calculating matching degrees for commutative and non-commutative query conditions, preferences, merging constraints and wishes, empty and overabundant answers, and views on practical realizations are discussed in this paper. Suggestions how to solve them and integrate into one compact solution are also outlined in this paper.
LA - eng
KW - membership functions; aggregation functions; preferences; commutative queries; non-commutative queries; empty and overabundant answers; application
UR - http://eudml.org/doc/276236
ER -

References

top
  1. Andreasen, T., Pivert, O., 10.1007/3-540-58495-1_15, In: Proc. 8th International Symposium on Methodologies for Intelligent Systems, Charlotte 1994, pp. 144-151. DOI10.1007/3-540-58495-1_15
  2. Bilgiç, T., Türkşen, I. B., 10.1002/9780470724163.ch6, In: Handbook of Granular Computing (W. Pedrycz, A. Skowron and V. Kreinovich, eds.), Wiley-Interscience, Chichester, West Sussex 2008, pp. 141-153. DOI10.1002/9780470724163.ch6
  3. Boole, G., The calculus of logic., Cambridge and Dublin Math. J. III (1848), 183-198. 
  4. Bosc, P., Hadjali, A., Pivert, O., Smits, G., 10.1007/978-3-642-25838-1_12, In: Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, Volume 398 (F. Guillet, B. Pinaud, G. Venturini and D.A. Zighed, eds.), Springer-Verlag, Heidelberg 2012, pp. 213-233. DOI10.1007/978-3-642-25838-1_12
  5. Bosc, P., Brando, C., Hadjali, A., Jaudoin, H., Pivert, O., Semantic proximity between queries and the empty answer problem., In: Proc. Joint IFSA-EUSFLAT Conference, Lisbon 2009, pp. 259-264. 
  6. Bosc, P., Kraft, D., Petry, F., 10.1016/j.fss.2005.05.039, Fuzzy Sets and Systems 156 (2005), 418-426. MR2180477DOI10.1016/j.fss.2005.05.039
  7. Bosc, P., Hadjali, A., Pivert, O., 10.1016/j.fss.2008.01.007, Fuzzy Sets and Systems 159 (2008), 1450-1467. Zbl1176.68060MR2417842DOI10.1016/j.fss.2008.01.007
  8. Bosc, P., Hadjali, A., Pivert, O., Weakening of fuzzy relational queries: and absolute proximity relation-based approach., Mathware and Soft Comput. 14 (2007), 35-55. MR2387077
  9. Bosc, P., Pivert, O., Smits, G., 10.1007/978-3-642-15576-5_9, In: Proc. 14th East-European Conference on Advances in Databases and Information Systems (ADBIS'10), Novi Sad 2010, pp. 88-102. DOI10.1007/978-3-642-15576-5_9
  10. Bosc, P., Pivert, O., 10.1016/j.ins.2012.07.018, Inform. Sci. 219 (2013), 1-16. Zbl1293.68093MR2991555DOI10.1016/j.ins.2012.07.018
  11. Bosc, P., Pivert, O., 10.1016/j.fss.2011.11.005, Fuzzy Sets and Systems 202 (2012), 42-60. Zbl1254.68105MR2934785DOI10.1016/j.fss.2011.11.005
  12. Bosc, P., Pivert, O., 10.1007/978-3-7908-1865-9_11, In: Knowledge Management in Fuzzy Databases (M. Pons, M. Vila and J. Kacprzyk, eds.), Physica-Verlag, Heidelberg 2000, pp. 171-190. Zbl0964.68047DOI10.1007/978-3-7908-1865-9_11
  13. Bosc, P., Pivert, O., 10.1109/91.366566, IEEE Trans. Fuzzy Systems 3 (1995), 1-17. DOI10.1109/91.366566
  14. Bosc, P., Pivert, O., Mokhtari, A., 10.1109/fuzzy.2009.5277136, In: Proc. International Conference on Fuzzy Systems (FUZZ-IEEE 2009), Jeju Island 2009, pp. 484-489. DOI10.1109/fuzzy.2009.5277136
  15. Cox, E., 10.1016/b978-012194275-5/50002-5, Morgan Kaufman, San Francisco 2005. Zbl1113.68072DOI10.1016/b978-012194275-5/50002-5
  16. Dubois, D., Prade, H., 10.4018/978-1-59904-853-6.ch004, In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 97-114. DOI10.4018/978-1-59904-853-6.ch004
  17. Dubois, D., Prade, H., 10.1007/978-1-4615-6075-3_3, In: Flexible Query Answering Systems (T. Andreasen, H. Christiansen and H. L. Larsen, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 45-60. Zbl0886.68051DOI10.1007/978-1-4615-6075-3_3
  18. Dubois, D., Prade, H., 10.1016/0020-0255(86)90035-6, Inform. Sci. 39 (1986), 205-210. Zbl0605.03021MR0855187DOI10.1016/0020-0255(86)90035-6
  19. Garibaldi, J. M., John, R. I., 10.1109/fuzz.2003.1209428, In: Proc. 12th IEEE International Conference on Fuzzy Systems (FUZZ'03), St. Louis 2003, pp. 578-583. DOI10.1109/fuzz.2003.1209428
  20. George, R., Srikanth, R., Data summarization using genetic algorithms and fuzzy logic., In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.), Physica Verlag, Heidelberg 1996, pp. 599-611. 
  21. Glöckner, I., 10.1109/fuzzy.2006.1681790, In: Proc. IEEE International Conference on Fuzzy Systems, Vancouver 2006, pp. 720-727. DOI10.1109/fuzzy.2006.1681790
  22. Gupta, M., Qi, J., 10.1016/0165-0114(91)90171-l, Fuzzy Sets and Systems 40 (1991), 431-450. Zbl0726.03017MR1104336DOI10.1016/0165-0114(91)90171-l
  23. Hudec, M., Vuc̆etić, M., Vujošević, M., Synergy of linguistic summaries and fuzzy functional dependencies for mining knowledge in the data., In: Proc. 18th IEEE International Conference on System Theory, Control and Computing (ICSTCC 2014), Sinaia 2013, pp. 335-340. 
  24. Hudec, M., Issues in construction of linguistic summaries., In: Proc. Uncertainty Modelling 2013 (R. Mesiar and T. Bacigál, eds.), STU, Bratislava 2013, pp. 35-44. 
  25. Hudec, M., Improvement of data collection and dissemination by fuzzy logic., In: Joint UNECE/Eurostat/OECD Meeting on the Management of Statistical Information Systems (MSIS 2013), Paris - Bangkok 2013. 
  26. Hudec, M., Vuc̆etić, M., Vujošević, M., Comparison of linguistic summaries and fuzzy functional dependencies related to data mining., In: Biologically-Inspired Techniques for Knowledge Discovery and Data Mining (S. Alam, G. Dobbie, Y. Sing Koh and S. ur Rehman, eds.), Information Science Reference, Hershey 2014, pp. 174-203. 
  27. Hudec, M., 10.2298/yjor1102239h, Yugoslav J. Oper. Res. 21 (2011), 2, 239-251. Zbl1289.68028DOI10.2298/yjor1102239h
  28. Hudec, M., 10.2298/csis0902127h, Computer Sci. Inform. Systems 6 (2009), 2, 127-140. DOI10.2298/csis0902127h
  29. Hudec, M., Sudzina, F., 10.5220/0003968802530258, In: Proc. 14th International Conference on Enterprise Information Systems (ICEIS 2012), Wroclaw 2012, Proceedings volume 1, pp. 253-257. DOI10.5220/0003968802530258
  30. Kacprzyk, J., Zadrożny, S., 10.4018/jssci.2009010107, Int. J. Software Sci. and Comput. Intel. 1 (2009), 100-111. DOI10.4018/jssci.2009010107
  31. Kacprzyk, J., Zadrożny, S., 10.1007/978-3-7908-1897-0_18, In: Fuzziness in Database Management Systems (P. Bosc and J. Kacprzyk, eds.), Physica-Verlag, Heidelberg 1995, pp. 415-433. DOI10.1007/978-3-7908-1897-0_18
  32. Kacprzyk, J., Zadrożny, S., Ziółkowski, A., 10.1016/0306-4379(89)90012-4, Information Systems 14 (1989), 6, 443-453. DOI10.1016/0306-4379(89)90012-4
  33. Kacprzyk, J., Ziółkowski, A., 10.1109/tsmc.1986.4308982, IEEE Trans. Systems, Man and Cybernetics SMC-16 (1986), 3, 474-479. DOI10.1109/tsmc.1986.4308982
  34. Kacprzyk, J., Pasi, G., .Vojtáš, P, Zadrożny, S., Fuzzy querying: issues and perspectives., Kybernetika 36 (2000), 6, 605-616. 
  35. Kacprzyk, J., Yager, R. R., 10.1080/03081070108960702, International Journal of General Systems 30 (2001), 133-154. Zbl1001.68039MR1884834DOI10.1080/03081070108960702
  36. Kacprzyk, J., Zadrożny, S., 10.1016/s0020-0255(01)00093-7, Inform. Sci. 134 (2001), 71-109. Zbl1004.68568DOI10.1016/s0020-0255(01)00093-7
  37. Klement, E., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
  38. Klir, G., Yuan, B., Fuzzy Sets and Fuzzy Logic, Theory and Applications., Prentice Hall, New Jersey 2005. Zbl0915.03001
  39. Lacroix, M., Lavency, P., Preferences: putting more knowledge into queries., In: Proc. 13th International Conference on Very Large Databases, Brighton, 1987 pp. 217-225. 
  40. Pivert, O., Bosc, P., 10.1142/9781848168701, Imperial College Press, London 2012. Zbl1246.68011DOI10.1142/9781848168701
  41. Rasmussen, D., Yager, R., 10.1016/s1088-467x(98)00009-2, Intelligent Data Analysis 1 (1997), 49-58. DOI10.1016/s1088-467x(98)00009-2
  42. Ribeiro, R., Moreira, A., 10.1016/s1071-5819(03)00010-7, Int. J. of Human-Computer Studies 58 (2003), 363-391. DOI10.1016/s1071-5819(03)00010-7
  43. Radojević, D., 10.1007/978-3-540-73185-6_13, In: Forging New Frontiers: Fuzzy Pioneers II Studies in Fuzziness and Soft Computing (M. Nikravesh, J. Kacprzyk and L. Zadeh, eds.), Springer-Verlag, Berlin Heidelberg 2008, pp. 295-318. DOI10.1007/978-3-540-73185-6_13
  44. Rosado, A., Ribeiro, R., Zadrożny, S., Kacprzyk, J., 10.1007/3-540-33289-8_1, In: Flexible Databases Supporting Imprecision and Uncertainty. Studies in fuzziness and soft computing, Vol. 203 (G. Bordogna and G. Psaila, eds.), Springer-Verlag, Berlin Heidelberg 2006, pp. 3-53. DOI10.1007/3-540-33289-8_1
  45. Siler, W., Buckley, J., 10.1002/0471698504, John Wiley and Sons, New Jersey 2005. DOI10.1002/0471698504
  46. Smits, G., Pivert, O., Girault, T., 10.14778/2536274.2536277, In: Proc. 39th International Conference on Very Large Data Bases, Trento 2013, pp. 1206-1209. DOI10.14778/2536274.2536277
  47. Smits, G., Pivert, O., Girault, T., 10.1109/fuzz-ieee.2013.6622356, In: Proc. 22th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013), Hyderabad 2013, pp. 1-8. DOI10.1109/fuzz-ieee.2013.6622356
  48. Smits, G., Pivert, O., Hadjali, A., 10.1007/978-3-319-00954-4_12, In: Flexible Approaches in Data, Information and Knowledge Management (O. Pivert and S. Zadrożny, eds.), Studies in Computational Intelligence, volume 497, Springer, Berlin Heidelberg 2013, pp. 261-289. DOI10.1007/978-3-319-00954-4_12
  49. Tahani, V., 10.1016/0306-4573(77)90018-8, Inform. Processing and Management 13 (1977), 5, 289-303. Zbl0361.68136DOI10.1016/0306-4573(77)90018-8
  50. Tudorie, C., Bumbaru, S., Dumitriu, L., 10.1109/is.2006.348398, In: Proc. 3rd International IEEE Conference on Intelligent Systems, London 2006, pp. 83-88. DOI10.1109/is.2006.348398
  51. Tudorie, C., 10.4018/978-1-59904-853-6.ch009, In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 218-245. DOI10.4018/978-1-59904-853-6.ch009
  52. Tudorie, C., Intelligent interfaces for database fuzzy querying., The annals of Dunarea de Jos University of Galati, Fascicle III 32 (2009), 2. 
  53. Verkulien, J., 10.1177/0049124105274498, Sociological Methods Res. 33 (2005), 462-496. MR2137245DOI10.1177/0049124105274498
  54. Vuc̆etić, M., Vujošević, M., A literature overview of functional dependencies in fuzzy relational database models., Technics Technologies Education Management 7 (2012), 4, 1593-1604. 
  55. Wang, T. C., Lee, H. D., Chen, C. M., 10.1142/9789812709677_0203, In: Proc. Joint Conference on Information Science, Salt Lake City 2007, pp. 1426-1432. DOI10.1142/9789812709677_0203
  56. Werro, N., Meier, A., Mezger, C., Schindler, G., Concept and implementation of a fuzzy classification query language., In: Proc. International Conference on Data Mining, Las Vegas 2005, pp. 208-214. 
  57. Wu, H. C., Fuzzy Systems and Neural Networks., National Chi Nan University, Puli, Nantou 2002. 
  58. Yager, R., 10.1016/0020-7373(92)90096-4, International Journal of Man-Machine Studies 36 (1992), 553-570. DOI10.1016/0020-7373(92)90096-4
  59. Yager, R. R., 10.1109/21.87068, IEEE Trans. Systems, Man and Cybernetics SMC-18 (1988), 183-190. MR0931863DOI10.1109/21.87068
  60. Yager, R. R., 10.1016/0020-0255(82)90033-0, Information Sciences 28 (1982), 69-86. Zbl0517.94027MR0694653DOI10.1016/0020-0255(82)90033-0
  61. Ying, M., 10.1109/91.983282, IEEE Trans. Fuzzy Systems 10 (2002), 1, 88-91. DOI10.1109/91.983282
  62. Zadeh, L., 10.1016/0898-1221(83)90013-5, Computers and Math. Appl. 9 (1983), 149-184. Zbl0517.94028MR0719073DOI10.1016/0898-1221(83)90013-5
  63. Zadeh, L., 10.1016/s0019-9958(65)90241-x, Information and Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI10.1016/s0019-9958(65)90241-x
  64. Zadrożny, S., Kacprzyk, J., 10.1007/s10844-008-0068-1, J. Intell. Inform. Systems 33 (2009), 307-325. DOI10.1007/s10844-008-0068-1
  65. Zadrożny, S., Kacprzyk, J., 10.1007/978-3-642-02190-9_3, In: Advances in Data Management, Studies in Computational Intelligence, Vol. 223 (Z. W. Ras and A. Dardzinska, eds.), Springer-Verlag, Berlin Heidelberg 2009, pp. 49-66. MR3380483DOI10.1007/978-3-642-02190-9_3
  66. Zadrożny, S., Tré, G. de, Caluwe, R. de, Kacprzyk, J., 10.4018/978-1-59904-853-6.ch002, In: Handbook of Research on Fuzzy Information Processing in Databases (J. Galindo, ed.), Information Science Reference, Hershey 2008, pp. 34-55. DOI10.4018/978-1-59904-853-6.ch002
  67. Zhou, S.-M., Chiclana, F., John, R. I., .Garibaldi, J. M., 10.1007/978-3-642-17910-5_5, In: Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice (R. R. Yager, J. Kacprzyk and G. Beliakov, eds.), Studies in Fuzziness and Soft Computing Volume 265, Springer-Verlag, Berlin Heidelberg 2011, pp. 91-109. MR2778300DOI10.1007/978-3-642-17910-5_5
  68. Zhou, S.-M., Chiclana, F., John, R. I., .Garibaldi, J. M., 10.1016/j.fss.2008.06.018, Fuzzy Sets and Systems 159 (2008), 3281-3296. MR2467606DOI10.1016/j.fss.2008.06.018
  69. Zimmerman, H. J., Zysno, P., 10.1016/0165-0114(80)90062-7, Fuzzy Sets and Systems 4 (1980), 37-51. DOI10.1016/0165-0114(80)90062-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.