Some results on -injective modules, -flat modules and -coherent rings
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 4, page 505-513
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZhu, Zhanmin. "Some results on $(n,d)$-injective modules, $(n,d)$-flat modules and $n$-coherent rings." Commentationes Mathematicae Universitatis Carolinae 56.4 (2015): 505-513. <http://eudml.org/doc/276261>.
@article{Zhu2015,
abstract = {Let $n,d$ be two non-negative integers. A left $R$-module $M$ is called $(n,d)$-injective, if $\{\rm Ext\}^\{d+1\}(N, M)=0$ for every $n$-presented left $R$-module $N$. A right $R$-module $V$ is called $(n,d)$-flat, if $\{\rm Tor\}_\{d+1\}(V, N)=0$ for every $n$-presented left $R$-module $N$. A left $R$-module $M$ is called weakly $n$-$FP$-injective, if $\{\rm Ext\}^n(N, M)=0$ for every $(n+1)$-presented left $R$-module $N$. A right $R$-module $V$ is called weakly $n$-flat, if $\{\rm Tor\}_n(V, N)=0$ for every $(n+1)$-presented left $R$-module $N$. In this paper, we give some characterizations and properties of $(n,d)$-injective modules and $(n,d)$-flat modules in the cases of $n\ge d+1$ or $n> d+1$. Using the concepts of weakly $n$-$FP$-injectivity and weakly $n$-flatness of modules, we give some new characterizations of left $n$-coherent rings.},
author = {Zhu, Zhanmin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$(n,d)$-injective modules; $(n,d)$-flat modules; $n$-coherent rings},
language = {eng},
number = {4},
pages = {505-513},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some results on $(n,d)$-injective modules, $(n,d)$-flat modules and $n$-coherent rings},
url = {http://eudml.org/doc/276261},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Zhu, Zhanmin
TI - Some results on $(n,d)$-injective modules, $(n,d)$-flat modules and $n$-coherent rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 4
SP - 505
EP - 513
AB - Let $n,d$ be two non-negative integers. A left $R$-module $M$ is called $(n,d)$-injective, if ${\rm Ext}^{d+1}(N, M)=0$ for every $n$-presented left $R$-module $N$. A right $R$-module $V$ is called $(n,d)$-flat, if ${\rm Tor}_{d+1}(V, N)=0$ for every $n$-presented left $R$-module $N$. A left $R$-module $M$ is called weakly $n$-$FP$-injective, if ${\rm Ext}^n(N, M)=0$ for every $(n+1)$-presented left $R$-module $N$. A right $R$-module $V$ is called weakly $n$-flat, if ${\rm Tor}_n(V, N)=0$ for every $(n+1)$-presented left $R$-module $N$. In this paper, we give some characterizations and properties of $(n,d)$-injective modules and $(n,d)$-flat modules in the cases of $n\ge d+1$ or $n> d+1$. Using the concepts of weakly $n$-$FP$-injectivity and weakly $n$-flatness of modules, we give some new characterizations of left $n$-coherent rings.
LA - eng
KW - $(n,d)$-injective modules; $(n,d)$-flat modules; $n$-coherent rings
UR - http://eudml.org/doc/276261
ER -
References
top- Chen J.L., Ding N.Q., 10.1080/00927879608825742, Comm. Algebra 24 (1996), 3211–3216. Zbl0877.16010MR1402554DOI10.1080/00927879608825742
- D.L. Costa, 10.1080/00927879408825061, Comm. Algebra 22 (1994), no. 10, 3997–4011. Zbl0814.13010MR1280104DOI10.1080/00927879408825061
- Enochs E.E., Jenda O.M.G., Relative Homological Algebra, Walter de Gruyter, Berlin-New York, 2000. Zbl0952.13001MR1753146
- Holm H., Jørgensen P., Covers, precovers, and purity, Illinois J. Math. 52 (2008), 691–703. Zbl1189.16007MR2524661
- Megibben C., 10.1090/S0002-9939-1970-0294409-8, Proc. Amer.Math. Soc. 26 (1970), 561–566. Zbl0216.33803MR0294409DOI10.1090/S0002-9939-1970-0294409-8
- Rada J., Saorin M., 10.1080/00927879808826172, Comm. Algebra 26 (1998), 899–912. Zbl0908.16003MR1606190DOI10.1080/00927879808826172
- Stenström B., 10.1112/jlms/s2-2.2.323, J. London Math. Soc. 2 (1970), 323–329. MR0258888DOI10.1112/jlms/s2-2.2.323
- Zhou D.X., 10.1081/AGB-120037230, Comm. Algebra 32 (2004), 2425–2441. Zbl1089.16001MR2100480DOI10.1081/AGB-120037230
- Zhu Z., On -coherent rings, -hereditary rings and -regular rings, Bull. Iranian Math. Soc. 37 (2011), 251–267. Zbl1277.16007MR2915464
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.