Strongly -coherent rings, -semihereditary rings and -regular rings
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 657-674
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhu, Zhanmin. "Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings." Czechoslovak Mathematical Journal 70.3 (2020): 657-674. <http://eudml.org/doc/297339>.
@article{Zhu2020,
abstract = {Let $\mathcal \{T\}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. A left $R$-module $M$ is called $(\mathcal \{T\},n)$-injective if $\{\rm Ext\}^n_R(C, M)=0$ for each $(\mathcal \{T\},n+1)$-presented left $R$-module $C$; a right $R$-module $M$ is called $(\mathcal \{T\},n)$-flat if $\{\rm Tor\}^R_n(M, C)=0$ for each $(\mathcal \{T\},n+1)$-presented left $R$-module $C$; a left $R$-module $M$ is called $(\mathcal \{T\},n)$-projective if $\{\rm Ext\}^n_R(M, N)=0$ for each $(\mathcal \{T\},n)$-injective left $R$-module $N$; the ring $R$ is called strongly $(\mathcal \{T\},n)$-coherent if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal \{T\},n+1)$-presented and $P$ is finitely generated projective, then $K$ is $(\mathcal \{T\},n)$-projective; the ring $R$ is called $(\mathcal \{T\},n)$-semihereditary if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal \{T\},n+1)$-presented and $P$ is finitely generated projective, then $\{\rm pd\} (K)\le n-1$. Using the concepts of $(\mathcal \{T\},n)$-injectivity and $(\mathcal \{T\},n)$-flatness of modules, we present some characterizations of strongly $(\mathcal \{T\},n)$-coherent rings, $(\mathcal \{T\},n)$-semihereditary rings and $(\mathcal \{T\},n)$-regular rings.},
author = {Zhu, Zhanmin},
journal = {Czechoslovak Mathematical Journal},
keywords = {$(\mathcal \{T\},n)$-injective module; $(\mathcal \{T\},n)$-flat module; strongly $(\mathcal \{T\},n)$-coherent ring; $(\mathcal \{T\},n)$-semihereditary ring; $(\mathcal \{T\},n)$-regular ring},
language = {eng},
number = {3},
pages = {657-674},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strongly $(\mathcal \{T\},n)$-coherent rings, $(\mathcal \{T\},n)$-semihereditary rings and $(\mathcal \{T\},n)$-regular rings},
url = {http://eudml.org/doc/297339},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Zhu, Zhanmin
TI - Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 657
EP - 674
AB - Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. A left $R$-module $M$ is called $(\mathcal {T},n)$-injective if ${\rm Ext}^n_R(C, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat if ${\rm Tor}^R_n(M, C)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a left $R$-module $M$ is called $(\mathcal {T},n)$-projective if ${\rm Ext}^n_R(M, N)=0$ for each $(\mathcal {T},n)$-injective left $R$-module $N$; the ring $R$ is called strongly $(\mathcal {T},n)$-coherent if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then $K$ is $(\mathcal {T},n)$-projective; the ring $R$ is called $(\mathcal {T},n)$-semihereditary if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then ${\rm pd} (K)\le n-1$. Using the concepts of $(\mathcal {T},n)$-injectivity and $(\mathcal {T},n)$-flatness of modules, we present some characterizations of strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings.
LA - eng
KW - $(\mathcal {T},n)$-injective module; $(\mathcal {T},n)$-flat module; strongly $(\mathcal {T},n)$-coherent ring; $(\mathcal {T},n)$-semihereditary ring; $(\mathcal {T},n)$-regular ring
UR - http://eudml.org/doc/297339
ER -
References
top- Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Am. Math. Soc. 97 (1960), 457-473. (1960) Zbl0100.26602MR0120260DOI10.1090/S0002-9947-1960-0120260-3
- Chen, J., Ding, N., 10.1017/S0004972700021791, Bull. Aust. Math. Soc. 54 (1996), 383-390. (1996) Zbl0882.16002MR1419601DOI10.1017/S0004972700021791
- Chen, J., Ding, N., 10.1080/00927879608825742, Commun. Algebra 24 (1996), 3211-3216. (1996) Zbl0877.16010MR1402554DOI10.1080/00927879608825742
- Costa, D. L., 10.1080/00927879408825061, Commun. Algebra 22 (1994), 3997-4011. (1994) Zbl0814.13010MR1280104DOI10.1080/00927879408825061
- Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
- Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A., 10.7146/math.scand.a-14429, Math. Scand. 94 (2004), 46-62. (2004) Zbl1061.16003MR2032335DOI10.7146/math.scand.a-14429
- Jain, S., 10.1090/S0002-9939-1973-0323828-9, Proc. Am. Math. Soc. 41 (1973), 437-442. (1973) Zbl0246.16013MR0323828DOI10.1090/S0002-9939-1973-0323828-9
- Kabbaj, S.-E., Mahdou, N., 10.1081/AGB-200027791, Commun. Algebra 32 (2004), 3937-3953. (2004) Zbl1068.13002MR2097439DOI10.1081/AGB-200027791
- Mao, L., Ding, N., 10.1081/AGB-200053832, Commun. Algebra 33 (2005), 1153-1170. (2005) Zbl1097.16005MR2136693DOI10.1081/AGB-200053832
- Megibben, C., 10.1090/S0002-9939-1970-0294409-8, Proc. Am. Math. Soc. 26 (1970), 561-566. (1970) Zbl0216.33803MR0294409DOI10.1090/S0002-9939-1970-0294409-8
- Stenström, B., 10.1112/jlms/s2-2.2.323, J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. (1970) Zbl0194.06602MR0258888DOI10.1112/jlms/s2-2.2.323
- Trlifaj, J., Cover, Envelopes, and Cotorsion Theories, Lecture Notes for the Workshop ``Homological Methods in Module Theory'' Cortona, September 10-16 (2000). (2000)
- Zhou, D., 10.1081/AGB-120037230, Commun. Algebra 32 (2004), 2425-2441. (2004) Zbl1089.16001MR2100480DOI10.1081/AGB-120037230
- Zhu, Z., On -coherent rings, -hereditary rings and -regular rings, Bull. Iran. Math. Soc. 37 (2011), 251-267. (2011) Zbl1277.16007MR2915464
- Zhu, Z., 10.14712/1213-7243.2015.133, Comment. Math. Univ. Carol. 56 (2015), 505-513. (2015) Zbl1363.16013MR3434225DOI10.14712/1213-7243.2015.133
- Zhu, Z., 10.21136/CMJ.2018.0494-16, Czech. Math. J. 68 (2018), 455-474. (2018) Zbl06890383MR3819184DOI10.21136/CMJ.2018.0494-16
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.