Strongly ( 𝒯 , n ) -coherent rings, ( 𝒯 , n ) -semihereditary rings and ( 𝒯 , n ) -regular rings

Zhanmin Zhu

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 657-674
  • ISSN: 0011-4642

Abstract

top
Let 𝒯 be a weak torsion class of left R -modules and n a positive integer. A left R -module M is called ( 𝒯 , n ) -injective if Ext R n ( C , M ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module C ; a right R -module M is called ( 𝒯 , n ) -flat if Tor n R ( M , C ) = 0 for each ( 𝒯 , n + 1 ) -presented left R -module C ; a left R -module M is called ( 𝒯 , n ) -projective if Ext R n ( M , N ) = 0 for each ( 𝒯 , n ) -injective left R -module N ; the ring R is called strongly ( 𝒯 , n ) -coherent if whenever 0 K P C 0 is exact, where C is ( 𝒯 , n + 1 ) -presented and P is finitely generated projective, then K is ( 𝒯 , n ) -projective; the ring R is called ( 𝒯 , n ) -semihereditary if whenever 0 K P C 0 is exact, where C is ( 𝒯 , n + 1 ) -presented and P is finitely generated projective, then pd ( K ) n - 1 . Using the concepts of ( 𝒯 , n ) -injectivity and ( 𝒯 , n ) -flatness of modules, we present some characterizations of strongly ( 𝒯 , n ) -coherent rings, ( 𝒯 , n ) -semihereditary rings and ( 𝒯 , n ) -regular rings.

How to cite

top

Zhu, Zhanmin. "Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings." Czechoslovak Mathematical Journal 70.3 (2020): 657-674. <http://eudml.org/doc/297339>.

@article{Zhu2020,
abstract = {Let $\mathcal \{T\}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. A left $R$-module $M$ is called $(\mathcal \{T\},n)$-injective if $\{\rm Ext\}^n_R(C, M)=0$ for each $(\mathcal \{T\},n+1)$-presented left $R$-module $C$; a right $R$-module $M$ is called $(\mathcal \{T\},n)$-flat if $\{\rm Tor\}^R_n(M, C)=0$ for each $(\mathcal \{T\},n+1)$-presented left $R$-module $C$; a left $R$-module $M$ is called $(\mathcal \{T\},n)$-projective if $\{\rm Ext\}^n_R(M, N)=0$ for each $(\mathcal \{T\},n)$-injective left $R$-module $N$; the ring $R$ is called strongly $(\mathcal \{T\},n)$-coherent if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal \{T\},n+1)$-presented and $P$ is finitely generated projective, then $K$ is $(\mathcal \{T\},n)$-projective; the ring $R$ is called $(\mathcal \{T\},n)$-semihereditary if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal \{T\},n+1)$-presented and $P$ is finitely generated projective, then $\{\rm pd\} (K)\le n-1$. Using the concepts of $(\mathcal \{T\},n)$-injectivity and $(\mathcal \{T\},n)$-flatness of modules, we present some characterizations of strongly $(\mathcal \{T\},n)$-coherent rings, $(\mathcal \{T\},n)$-semihereditary rings and $(\mathcal \{T\},n)$-regular rings.},
author = {Zhu, Zhanmin},
journal = {Czechoslovak Mathematical Journal},
keywords = {$(\mathcal \{T\},n)$-injective module; $(\mathcal \{T\},n)$-flat module; strongly $(\mathcal \{T\},n)$-coherent ring; $(\mathcal \{T\},n)$-semihereditary ring; $(\mathcal \{T\},n)$-regular ring},
language = {eng},
number = {3},
pages = {657-674},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strongly $(\mathcal \{T\},n)$-coherent rings, $(\mathcal \{T\},n)$-semihereditary rings and $(\mathcal \{T\},n)$-regular rings},
url = {http://eudml.org/doc/297339},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Zhu, Zhanmin
TI - Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 657
EP - 674
AB - Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. A left $R$-module $M$ is called $(\mathcal {T},n)$-injective if ${\rm Ext}^n_R(C, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat if ${\rm Tor}^R_n(M, C)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a left $R$-module $M$ is called $(\mathcal {T},n)$-projective if ${\rm Ext}^n_R(M, N)=0$ for each $(\mathcal {T},n)$-injective left $R$-module $N$; the ring $R$ is called strongly $(\mathcal {T},n)$-coherent if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then $K$ is $(\mathcal {T},n)$-projective; the ring $R$ is called $(\mathcal {T},n)$-semihereditary if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then ${\rm pd} (K)\le n-1$. Using the concepts of $(\mathcal {T},n)$-injectivity and $(\mathcal {T},n)$-flatness of modules, we present some characterizations of strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings.
LA - eng
KW - $(\mathcal {T},n)$-injective module; $(\mathcal {T},n)$-flat module; strongly $(\mathcal {T},n)$-coherent ring; $(\mathcal {T},n)$-semihereditary ring; $(\mathcal {T},n)$-regular ring
UR - http://eudml.org/doc/297339
ER -

References

top
  1. Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Am. Math. Soc. 97 (1960), 457-473. (1960) Zbl0100.26602MR0120260DOI10.1090/S0002-9947-1960-0120260-3
  2. Chen, J., Ding, N., 10.1017/S0004972700021791, Bull. Aust. Math. Soc. 54 (1996), 383-390. (1996) Zbl0882.16002MR1419601DOI10.1017/S0004972700021791
  3. Chen, J., Ding, N., 10.1080/00927879608825742, Commun. Algebra 24 (1996), 3211-3216. (1996) Zbl0877.16010MR1402554DOI10.1080/00927879608825742
  4. Costa, D. L., 10.1080/00927879408825061, Commun. Algebra 22 (1994), 3997-4011. (1994) Zbl0814.13010MR1280104DOI10.1080/00927879408825061
  5. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  6. Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A., 10.7146/math.scand.a-14429, Math. Scand. 94 (2004), 46-62. (2004) Zbl1061.16003MR2032335DOI10.7146/math.scand.a-14429
  7. Jain, S., 10.1090/S0002-9939-1973-0323828-9, Proc. Am. Math. Soc. 41 (1973), 437-442. (1973) Zbl0246.16013MR0323828DOI10.1090/S0002-9939-1973-0323828-9
  8. Kabbaj, S.-E., Mahdou, N., 10.1081/AGB-200027791, Commun. Algebra 32 (2004), 3937-3953. (2004) Zbl1068.13002MR2097439DOI10.1081/AGB-200027791
  9. Mao, L., Ding, N., 10.1081/AGB-200053832, Commun. Algebra 33 (2005), 1153-1170. (2005) Zbl1097.16005MR2136693DOI10.1081/AGB-200053832
  10. Megibben, C., 10.1090/S0002-9939-1970-0294409-8, Proc. Am. Math. Soc. 26 (1970), 561-566. (1970) Zbl0216.33803MR0294409DOI10.1090/S0002-9939-1970-0294409-8
  11. Stenström, B., 10.1112/jlms/s2-2.2.323, J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. (1970) Zbl0194.06602MR0258888DOI10.1112/jlms/s2-2.2.323
  12. Trlifaj, J., Cover, Envelopes, and Cotorsion Theories, Lecture Notes for the Workshop ``Homological Methods in Module Theory'' Cortona, September 10-16 (2000). (2000) 
  13. Zhou, D., 10.1081/AGB-120037230, Commun. Algebra 32 (2004), 2425-2441. (2004) Zbl1089.16001MR2100480DOI10.1081/AGB-120037230
  14. Zhu, Z., On n -coherent rings, n -hereditary rings and n -regular rings, Bull. Iran. Math. Soc. 37 (2011), 251-267. (2011) Zbl1277.16007MR2915464
  15. Zhu, Z., 10.14712/1213-7243.2015.133, Comment. Math. Univ. Carol. 56 (2015), 505-513. (2015) Zbl1363.16013MR3434225DOI10.14712/1213-7243.2015.133
  16. Zhu, Z., 10.21136/CMJ.2018.0494-16, Czech. Math. J. 68 (2018), 455-474. (2018) Zbl06890383MR3819184DOI10.21136/CMJ.2018.0494-16

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.