Compound geometric and Poisson models
Nooshin Hakamipour; Sadegh Rezaei; Saralees Nadarajah
Kybernetika (2015)
- Volume: 51, Issue: 6, page 933-959
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHakamipour, Nooshin, Rezaei, Sadegh, and Nadarajah, Saralees. "Compound geometric and Poisson models." Kybernetika 51.6 (2015): 933-959. <http://eudml.org/doc/276266>.
@article{Hakamipour2015,
abstract = {Many lifetime distributions are motivated only by mathematical interest. Here, eight new families of distributions are introduced. These distributions are motivated as models for the stress of a system consisting of components working in parallel/series and each component has a fixed number of sub-components working in parallel/series. Mathematical properties and estimation procedures are derived for one of the families of distributions. A real data application shows superior performance of a three-parameter distribution (performance assessed with respect to Kolmogorov-Smirnov statistics, AIC values, BIC values, CAIC values, AICc values, HQC values, probability-probability plots, quantile-quantile plots and density plots) versus thirty one other distributions, each having at least three parameters.},
author = {Hakamipour, Nooshin, Rezaei, Sadegh, Nadarajah, Saralees},
journal = {Kybernetika},
keywords = {exponential distribution; exponentiated exponential distribution; maximum likelihood estimation},
language = {eng},
number = {6},
pages = {933-959},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Compound geometric and Poisson models},
url = {http://eudml.org/doc/276266},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Hakamipour, Nooshin
AU - Rezaei, Sadegh
AU - Nadarajah, Saralees
TI - Compound geometric and Poisson models
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 933
EP - 959
AB - Many lifetime distributions are motivated only by mathematical interest. Here, eight new families of distributions are introduced. These distributions are motivated as models for the stress of a system consisting of components working in parallel/series and each component has a fixed number of sub-components working in parallel/series. Mathematical properties and estimation procedures are derived for one of the families of distributions. A real data application shows superior performance of a three-parameter distribution (performance assessed with respect to Kolmogorov-Smirnov statistics, AIC values, BIC values, CAIC values, AICc values, HQC values, probability-probability plots, quantile-quantile plots and density plots) versus thirty one other distributions, each having at least three parameters.
LA - eng
KW - exponential distribution; exponentiated exponential distribution; maximum likelihood estimation
UR - http://eudml.org/doc/276266
ER -
References
top- Akaike, H., 10.1109/tac.1974.1100705, IEEE Trans. Automat. Control 19 (1974), 716-723. Zbl0314.62039MR0423716DOI10.1109/tac.1974.1100705
- Bozdogan, H., 10.1007/bf02294361, Psychometrika 52 (1987), 345-370. Zbl0627.62005MR0914460DOI10.1007/bf02294361
- Burnham, K. P., D., Anderson, R., 10.1177/0049124104268644, Sociolog. Methods Res. 33 (2004), 261-304. MR2086350DOI10.1177/0049124104268644
- Ferguson, T. S., 10.1007/978-1-4899-4549-5, Chapman and Hall, London 1996. Zbl0871.62002MR1699953DOI10.1007/978-1-4899-4549-5
- Gupta, R. C., Gupta, P. L., Gupta, R. D., 10.1080/03610929808832134, Commun. Statist. - Theory and Methods 27 (1998), 887-904. Zbl0900.62534MR1613497DOI10.1080/03610929808832134
- Gupta, R. D., Kundu, D., 10.1111/1467-842x.00072, Australian and New Zealand J. Statist. 41 (1999), 173-188. Zbl1054.62013MR1705342DOI10.1111/1467-842x.00072
- Hannan, E. J., Quinn, B. G., The determination of the order of an autoregression., J. Royal Statist. Soc. B 41 (1979), 190-195. Zbl0408.62076MR0547244
- Hurvich, C. M., Tsai, C.-L., 10.1093/biomet/76.2.297, Biometrika 76 (1989), 297-307. Zbl0669.62085MR1016020DOI10.1093/biomet/76.2.297
- Kakde, C. S., Shirke, D. T., On exponentiated lognormal distribution., Int. J. Agricult. Statist. Sci. 2 (2006), 319-326.
- Kolmogorov, A., Sulla determinazione empirica di una legge di distribuzione., Giornale dell'Istituto Italiano degli Attuari 4 (1933), 83-91.
- Kolowrocki, K., Reliability of Large Systems., Elsevier, New York 2004.
- Leadbetter, M. R., Lindgren, G., Rootzén, H., Extremes and Related Properties of Random Sequences and Processes., Springer Verlag, New York 1987. Zbl0518.60021MR0691492
- Lehmann, L. E., Casella, G., 10.1007/b98854, Springer Verlag, New York 1998. MR1639875DOI10.1007/b98854
- Lemonte, A. J., Cordeiro, G. M., 10.1016/j.spl.2010.12.016, Statist. Probab. Lett. 81 (2011), 506-517. Zbl1207.62028MR2765171DOI10.1016/j.spl.2010.12.016
- Marshall, A. W., Olkin, I., 10.1093/biomet/84.3.641, Biometrika 84 (1997), 641-652. Zbl0888.62012MR1603936DOI10.1093/biomet/84.3.641
- Mudholkar, G. S., Srivastava, D. K., 10.1109/24.229504, IEEE Trans. Reliability 42 (1993), 299-302. Zbl0800.62609DOI10.1109/24.229504
- Mudholkar, G. S., Srivastava, D. K., Friemer, M., 10.2307/1269735, Technometrics 37 (1995), 436-445. DOI10.2307/1269735
- Mudholkar, G. S., Srivastava, D. K., Kollia, G. D., 10.2307/2291583, J. Amer. Statist. Assoc. 91 (1996), 1575-1583. Zbl0881.62017MR1439097DOI10.2307/2291583
- Nadarajah, S., 10.2307/2291583, Environmetrics 17 (2005), 13-23. MR2222031DOI10.2307/2291583
- Nadarajah, S., 10.1007/s10182-011-0154-5, Adv. Statist. Anal. 95 (2011), 219-251. Zbl1274.62113MR2823560DOI10.1007/s10182-011-0154-5
- Nadarajah, S., Gupta, A. K., 10.1177/0008068320070103, Calcutta Statist. Assoc. Bull. 59 (2007), 29-54. Zbl1155.33305MR2422847DOI10.1177/0008068320070103
- Nadarajah, S., Kotz, S., 10.1007/s10440-006-9055-0, Acta Applic. Math. 92 (2006), 97-111. Zbl1128.62015MR2265333DOI10.1007/s10440-006-9055-0
- Nichols, M. D., Padgett, W. J., 10.1002/qre.691, Qual. Reliab. Engrg. Int. 22 (2006), 141-151. DOI10.1002/qre.691
- Qian, L., 10.1016/j.stamet.2011.08.007, Statist. Meth. 9 (2012), 320-329. MR2871434DOI10.1016/j.stamet.2011.08.007
- Team, R Development Core, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing., Vienna, Austria 2014.
- Ristic, M., Nadarajah, S., 10.1080/00949655.2012.697163, J. Statist. Comput. Simul. 84 (2014), 135-150. MR3169316DOI10.1080/00949655.2012.697163
- Schwarz, G. E., 10.1214/aos/1176344136, Ann. Statist. 6 (1978), 461-464. Zbl0379.62005MR0468014DOI10.1214/aos/1176344136
- Shams, T. M., The Kumaraswamy-generalized exponentiated Pareto distribution., European J. Appl. Sci. 5 (2013), 92-99.
- Smirnov, N., 10.1214/aoms/1177730256, Ann. Math. Statist. 19 (1948), 279-281. Zbl0031.37001MR0025109DOI10.1214/aoms/1177730256
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.