Higgs bundles and representation spaces associated to morphisms

Indranil Biswas; Carlos Florentino

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 4, page 191-199
  • ISSN: 0044-8753

Abstract

top
Let G be a connected reductive affine algebraic group defined over the complex numbers, and K G be a maximal compact subgroup. Let X , Y be irreducible smooth complex projective varieties and f : X Y an algebraic morphism, such that π 1 ( Y ) is virtually nilpotent and the homomorphism f * : π 1 ( X ) π 1 ( Y ) is surjective. Define f ( π 1 ( X ) , G ) = { ρ Hom ( π 1 ( X ) , G ) A ρ factors through f * } , f ( π 1 ( X ) , K ) = { ρ Hom ( π 1 ( X ) , K ) A ρ factors through f * } , where A : G GL ( Lie ( G ) ) is the adjoint action. We prove that the geometric invariant theoretic quotient f ( π 1 ( X , x 0 ) , G ) / / G admits a deformation retraction to f ( π 1 ( X , x 0 ) , K ) / K . We also show that the space of conjugacy classes of n almost commuting elements in G admits a deformation retraction to the space of conjugacy classes of n almost commuting elements in K .

How to cite

top

Biswas, Indranil, and Florentino, Carlos. "Higgs bundles and representation spaces associated to morphisms." Archivum Mathematicum 051.4 (2015): 191-199. <http://eudml.org/doc/276268>.

@article{Biswas2015,
abstract = {Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset \, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\rightarrow Y$ an algebraic morphism, such that $\pi _1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi _1(X)\rightarrow \pi _1(Y)$ is surjective. Define \begin\{align*\} \{\mathcal \{R\} \}^f\big (\pi \_1(X), G\big )&= \lbrace \rho \in \operatorname\{Hom\}\big (\pi \_1(X), G\big ) \mid A\circ \rho \ \text\{ factors through \}~ f\_*\rbrace \,,\\[6pt] \{\mathcal \{R\} \}^f\big (\pi \_1(X), K\big )&= \lbrace \rho \in \operatorname\{Hom\}\big (\pi \_1(X), K\big ) \mid A\circ \rho \ \text\{ factors through \}~ f\_*\rbrace \,, \end\{align*\} where $A\colon G\rightarrow \operatorname\{GL\}(\operatorname\{Lie\}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient $\{\mathcal \{R\} \}^f(\pi _1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to $\{\mathcal \{R\} \}^f(\pi _1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.},
author = {Biswas, Indranil, Florentino, Carlos},
journal = {Archivum Mathematicum},
keywords = {Higgs bundle; flat connection; representation space; deformation retraction},
language = {eng},
number = {4},
pages = {191-199},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Higgs bundles and representation spaces associated to morphisms},
url = {http://eudml.org/doc/276268},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Biswas, Indranil
AU - Florentino, Carlos
TI - Higgs bundles and representation spaces associated to morphisms
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 4
SP - 191
EP - 199
AB - Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset \, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\rightarrow Y$ an algebraic morphism, such that $\pi _1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi _1(X)\rightarrow \pi _1(Y)$ is surjective. Define \begin{align*} {\mathcal {R} }^f\big (\pi _1(X), G\big )&= \lbrace \rho \in \operatorname{Hom}\big (\pi _1(X), G\big ) \mid A\circ \rho \ \text{ factors through }~ f_*\rbrace \,,\\[6pt] {\mathcal {R} }^f\big (\pi _1(X), K\big )&= \lbrace \rho \in \operatorname{Hom}\big (\pi _1(X), K\big ) \mid A\circ \rho \ \text{ factors through }~ f_*\rbrace \,, \end{align*} where $A\colon G\rightarrow \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient ${\mathcal {R} }^f(\pi _1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to ${\mathcal {R} }^f(\pi _1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.
LA - eng
KW - Higgs bundle; flat connection; representation space; deformation retraction
UR - http://eudml.org/doc/276268
ER -

References

top
  1. Anchouche, B., Biswas, I., 10.1353/ajm.2001.0007, Amer. J. Math. 123 (2001), 207–228. (2001) Zbl1007.53026MR1828221DOI10.1353/ajm.2001.0007
  2. Biswas, I., Bruzzo, U., 10.1007/s10711-009-9424-8, Geom. Dedicata 146 (2010), 27–41. (2010) Zbl1196.14043MR2644269DOI10.1007/s10711-009-9424-8
  3. Biswas, I., Florentino, C., Character varieties of virtually nilpotent Kähler groups and G –Higgs bundles, Ann. Inst. Fourier (Grenoble), to appear, arXiv:1405.0610. 
  4. Biswas, I., Florentino, C., 10.1016/j.jalgebra.2013.05.006, J. Algebra 388 (2013), 194–202. (2013) Zbl1285.14045MR3061684DOI10.1016/j.jalgebra.2013.05.006
  5. Biswas, I., Gómez, T.L., 10.1007/s10455-007-9072-x, Ann. Global Anal. Geom. 33 (2008), 19–46. (2008) Zbl1185.14032MR2369185DOI10.1007/s10455-007-9072-x
  6. Borel, A., Friedman, R., Morgan, J.W., Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157 (2002), no. 747. (2002) Zbl0993.22002MR1895253
  7. Florentino, C., Lawton, S., Topology of character varieties of Abelian groups, preprint arXiv:1301.7616. Zbl1300.14045MR3227204
  8. Kac, V.G., Smilga, A.V., Vacuum structure in supersymmetric Yang-Mills theories with any gauge group, preprint arXiv hep-th/9902029, 1999. Zbl1035.81061MR1885976
  9. Katzarkov, L., Pantev, T., Representations of fundamental groups whose Higgs bundles are pullbacks, J. Differential Geom. 39 (1994), 103–121. (1994) Zbl0810.14010MR1258916
  10. Pettet, A., Souto, J., 10.2140/gt.2013.17.2513, Geom. Topol. 17 (2013), 2513–2593. (2013) Zbl1306.55007MR3190294DOI10.2140/gt.2013.17.2513
  11. Simpson, C.T., 10.1007/BF02699491, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. (1992) Zbl0814.32003MR1179076DOI10.1007/BF02699491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.