Higgs bundles and representation spaces associated to morphisms
Indranil Biswas; Carlos Florentino
Archivum Mathematicum (2015)
- Volume: 051, Issue: 4, page 191-199
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBiswas, Indranil, and Florentino, Carlos. "Higgs bundles and representation spaces associated to morphisms." Archivum Mathematicum 051.4 (2015): 191-199. <http://eudml.org/doc/276268>.
@article{Biswas2015,
abstract = {Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset \, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\rightarrow Y$ an algebraic morphism, such that $\pi _1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi _1(X)\rightarrow \pi _1(Y)$ is surjective. Define \begin\{align*\} \{\mathcal \{R\} \}^f\big (\pi \_1(X), G\big )&= \lbrace \rho \in \operatorname\{Hom\}\big (\pi \_1(X), G\big ) \mid A\circ \rho \ \text\{ factors through \}~ f\_*\rbrace \,,\\[6pt] \{\mathcal \{R\} \}^f\big (\pi \_1(X), K\big )&= \lbrace \rho \in \operatorname\{Hom\}\big (\pi \_1(X), K\big ) \mid A\circ \rho \ \text\{ factors through \}~ f\_*\rbrace \,, \end\{align*\}
where $A\colon G\rightarrow \operatorname\{GL\}(\operatorname\{Lie\}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient $\{\mathcal \{R\} \}^f(\pi _1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to $\{\mathcal \{R\} \}^f(\pi _1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.},
author = {Biswas, Indranil, Florentino, Carlos},
journal = {Archivum Mathematicum},
keywords = {Higgs bundle; flat connection; representation space; deformation retraction},
language = {eng},
number = {4},
pages = {191-199},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Higgs bundles and representation spaces associated to morphisms},
url = {http://eudml.org/doc/276268},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Biswas, Indranil
AU - Florentino, Carlos
TI - Higgs bundles and representation spaces associated to morphisms
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 4
SP - 191
EP - 199
AB - Let $G$ be a connected reductive affine algebraic group defined over the complex numbers, and $K\,\subset \, G$ be a maximal compact subgroup. Let $X$, $Y$ be irreducible smooth complex projective varieties and $f\colon X\rightarrow Y$ an algebraic morphism, such that $\pi _1(Y)$ is virtually nilpotent and the homomorphism $f_*\colon \pi _1(X)\rightarrow \pi _1(Y)$ is surjective. Define \begin{align*} {\mathcal {R} }^f\big (\pi _1(X), G\big )&= \lbrace \rho \in \operatorname{Hom}\big (\pi _1(X), G\big ) \mid A\circ \rho \ \text{ factors through }~ f_*\rbrace \,,\\[6pt] {\mathcal {R} }^f\big (\pi _1(X), K\big )&= \lbrace \rho \in \operatorname{Hom}\big (\pi _1(X), K\big ) \mid A\circ \rho \ \text{ factors through }~ f_*\rbrace \,, \end{align*}
where $A\colon G\rightarrow \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient ${\mathcal {R} }^f(\pi _1(X, x_0),\, G)/\!\!/G$ admits a deformation retraction to ${\mathcal {R} }^f(\pi _1(X, x_0),\, K)/K$. We also show that the space of conjugacy classes of $n$ almost commuting elements in $G$ admits a deformation retraction to the space of conjugacy classes of $n$ almost commuting elements in $K$.
LA - eng
KW - Higgs bundle; flat connection; representation space; deformation retraction
UR - http://eudml.org/doc/276268
ER -
References
top- Anchouche, B., Biswas, I., 10.1353/ajm.2001.0007, Amer. J. Math. 123 (2001), 207–228. (2001) Zbl1007.53026MR1828221DOI10.1353/ajm.2001.0007
- Biswas, I., Bruzzo, U., 10.1007/s10711-009-9424-8, Geom. Dedicata 146 (2010), 27–41. (2010) Zbl1196.14043MR2644269DOI10.1007/s10711-009-9424-8
- Biswas, I., Florentino, C., Character varieties of virtually nilpotent Kähler groups and –Higgs bundles, Ann. Inst. Fourier (Grenoble), to appear, arXiv:1405.0610.
- Biswas, I., Florentino, C., 10.1016/j.jalgebra.2013.05.006, J. Algebra 388 (2013), 194–202. (2013) Zbl1285.14045MR3061684DOI10.1016/j.jalgebra.2013.05.006
- Biswas, I., Gómez, T.L., 10.1007/s10455-007-9072-x, Ann. Global Anal. Geom. 33 (2008), 19–46. (2008) Zbl1185.14032MR2369185DOI10.1007/s10455-007-9072-x
- Borel, A., Friedman, R., Morgan, J.W., Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157 (2002), no. 747. (2002) Zbl0993.22002MR1895253
- Florentino, C., Lawton, S., Topology of character varieties of Abelian groups, preprint arXiv:1301.7616. Zbl1300.14045MR3227204
- Kac, V.G., Smilga, A.V., Vacuum structure in supersymmetric Yang-Mills theories with any gauge group, preprint arXiv hep-th/9902029, 1999. Zbl1035.81061MR1885976
- Katzarkov, L., Pantev, T., Representations of fundamental groups whose Higgs bundles are pullbacks, J. Differential Geom. 39 (1994), 103–121. (1994) Zbl0810.14010MR1258916
- Pettet, A., Souto, J., 10.2140/gt.2013.17.2513, Geom. Topol. 17 (2013), 2513–2593. (2013) Zbl1306.55007MR3190294DOI10.2140/gt.2013.17.2513
- Simpson, C.T., 10.1007/BF02699491, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. (1992) Zbl0814.32003MR1179076DOI10.1007/BF02699491
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.