On computation of minimal free resolutions over solvable polynomial algebras

Huishi Li

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 4, page 447-503
  • ISSN: 0010-2628

Abstract

top
Let A = K [ a 1 , ... , a n ] be a (noncommutative) solvable polynomial algebra over a field K in the sense of A. Kandri-Rody and V. Weispfenning [Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1–26]. This paper presents a comprehensive study on the computation of minimal free resolutions of modules over A in the following two cases: (1) A = p A p is an -graded algebra with the degree-0 homogeneous part A 0 = K ; (2) A is an -filtered algebra with the filtration { F p A } p determined by a positive-degree function on A .

How to cite

top

Li, Huishi. "On computation of minimal free resolutions over solvable polynomial algebras." Commentationes Mathematicae Universitatis Carolinae 56.4 (2015): 447-503. <http://eudml.org/doc/276277>.

@article{Li2015,
abstract = {Let $A=K[a_1,\ldots ,a_n]$ be a (noncommutative) solvable polynomial algebra over a field $K$ in the sense of A. Kandri-Rody and V. Weispfenning [Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1–26]. This paper presents a comprehensive study on the computation of minimal free resolutions of modules over $A$ in the following two cases: (1) $A=\bigoplus _\{p\in \mathbb \{N\}\}A_p$ is an $\mathbb \{N\}$-graded algebra with the degree-0 homogeneous part $A_0=K$; (2) $A$ is an $\mathbb \{N\}$-filtered algebra with the filtration $\lbrace F_pA\rbrace _\{p\in \mathbb \{N\}\}$ determined by a positive-degree function on $A$.},
author = {Li, Huishi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {solvable polynomial algebra; Gröbner basis; minimal free resolution},
language = {eng},
number = {4},
pages = {447-503},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On computation of minimal free resolutions over solvable polynomial algebras},
url = {http://eudml.org/doc/276277},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Li, Huishi
TI - On computation of minimal free resolutions over solvable polynomial algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 4
SP - 447
EP - 503
AB - Let $A=K[a_1,\ldots ,a_n]$ be a (noncommutative) solvable polynomial algebra over a field $K$ in the sense of A. Kandri-Rody and V. Weispfenning [Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1–26]. This paper presents a comprehensive study on the computation of minimal free resolutions of modules over $A$ in the following two cases: (1) $A=\bigoplus _{p\in \mathbb {N}}A_p$ is an $\mathbb {N}$-graded algebra with the degree-0 homogeneous part $A_0=K$; (2) $A$ is an $\mathbb {N}$-filtered algebra with the filtration $\lbrace F_pA\rbrace _{p\in \mathbb {N}}$ determined by a positive-degree function on $A$.
LA - eng
KW - solvable polynomial algebra; Gröbner basis; minimal free resolution
UR - http://eudml.org/doc/276277
ER -

References

top
  1. Apel J., Lassner W., 10.1016/S0747-7171(88)80053-1, J. Symbolic Comput. 6 (1988), 361–370. Zbl0663.68044MR0988423DOI10.1016/S0747-7171(88)80053-1
  2. Adams W.W., Loustaunau P., 10.1090/gsm/003/02, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994. Zbl0803.13015MR1287608DOI10.1090/gsm/003/02
  3. Buchberger B., Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen polynomideal, Ph.D. Thesis, University of Innsbruck, 1965. Zbl1245.13020
  4. Buchberger B., Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory (Bose, N.K., ed.), Reidel Dordrecht, 1985, pp. 184–232. Zbl0587.13009
  5. Becker T., Weispfenning V., Gröbner Bases, Springer, New York, 1993. Zbl0772.13010MR1213453
  6. Capani A., De Dominicis G., Niesi G., Robbiano L., 10.1016/S0022-4049(97)00007-8, J. Pure Appl. Algebra 117/118 (1997), 105–117. Zbl0906.13006MR1457835DOI10.1016/S0022-4049(97)00007-8
  7. Decker W., Greuel G.-M., Pfister G., Schönemann H., Singular 3 - 1 - 3 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de(2011). 
  8. Eisenbud D., Commutative Algebra with a View Toward to Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer, New York, 1995. MR1322960
  9. Faugére J.-C., A new efficient algorithm for computing Gröobner bases without reduction to zero ( F 5 ) , in Proceedings ISSAC'02, ACM Press, New York, 2002, pp. 75–82. MR2035234
  10. Fröberg R., An Introduction to Gröbner Bases, Wiley, Chichester, 1997. Zbl0997.13500MR1483316
  11. Galligo A., Some algorithmic questions on ideals of differential operators, Proc. EUROCAL'85, Lecture Notes in Comput. Sci., 204, Springer, Berlin, 1985, pp. 413–421. Zbl0634.16001MR0826576
  12. Golod E.S., 10.1007/BFb0082019, in Some Current Trends in Algebra (Varna, 1986), Lecture Notes in Mathematics, 1352, Springer, Berlin, 1988, pp. 88–95. Zbl0892.16024MR0981820DOI10.1007/BFb0082019
  13. Humphreys J.E., Introduction to Lie Algebras and Representation Theory, Springer, New York-Berlin, 1972. Zbl0447.17002MR0323842
  14. Krähmer U., Notes on Koszul algebras, 2010, http://www.maths.gla.ac.uk/ ukraehmer/connected.pdf. 
  15. Kredel H., Solvable Polynomial Rings, Shaker-Verlag, 1993. Zbl0790.16027
  16. Kredel H., Pesch M., MAS, modula- 2 algebra system, 1998, http://krum.rz.uni-mannheim.de/mas/. 
  17. Kreuzer M., Robbiano L., 10.1007/978-3-540-70628-1, Springer, Berlin, 2000. MR1790326DOI10.1007/978-3-540-70628-1
  18. Kreuzer M., Robbiano L., Computational Commutative Algebra 2 , Springer, Berlin, 2005. MR2159476
  19. Kandri-Rody A., Weispfenning V., 10.1016/S0747-7171(08)80003-X, J. Symbolic Comput. 9 (1990), 1–26. Zbl0715.16010MR1044911DOI10.1016/S0747-7171(08)80003-X
  20. Levandovskyy V., Non-commutative computer algebra for polynomial algebra: Gröbner bases, applications and implementation, Ph.D. Thesis, TU Kaiserslautern, 2005. 
  21. Li H., 10.1007/b84211, Lecture Note in Mathematics, 1795, Springer, Berlin, 2002. MR1947291DOI10.1007/b84211
  22. Li H., Gröbner Bases in Ring Theory, World Scientific Publishing Co., Hackensack, NJ, 2012. MR2894019
  23. Li H., 10.1016/j.jpaa.2012.03.031, J. Pure Appl. Algebra 216 (2012), 2697–2708. MR2943750DOI10.1016/j.jpaa.2012.03.031
  24. Li H., A note on solvable polynomial algebras, Comput. Sci. J. Moldova 22 (2014), no. 1, 99–109; arXiv:1212.5988 [math.RA]. MR3243257
  25. Li H., Su C., On (de)homogenized Gröbner bases, Journal of Algebra, Number Theory: Advances and Applications 3 (2010), no. 1, 35–70. 
  26. Li H., Van Oystaeyen F., Zariskian Filtrations, -Monograph in Mathematics, 2, Kluwer Academic Publishers, Dordrecht, 1996. MR1420862
  27. Li H., Wu Y., 10.1080/00927870008826825, Comm. Algebra 28 (2000), no. 1, 15–32. MR1738569DOI10.1080/00927870008826825
  28. Schreyer F.O., Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrasschen Divisionsatz, Diplomarbeit, Hamburg, 1980. 
  29. Sun Y. et al., A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras, in Proc. ISSAC'12, ACM Press, New York, 2012, pp. 351–358. Zbl1308.68193MR3206324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.