On computation of minimal free resolutions over solvable polynomial algebras
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 4, page 447-503
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLi, Huishi. "On computation of minimal free resolutions over solvable polynomial algebras." Commentationes Mathematicae Universitatis Carolinae 56.4 (2015): 447-503. <http://eudml.org/doc/276277>.
@article{Li2015,
abstract = {Let $A=K[a_1,\ldots ,a_n]$ be a (noncommutative) solvable polynomial algebra over a field $K$ in the sense of A. Kandri-Rody and V. Weispfenning [Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1–26]. This paper presents a comprehensive study on the computation of minimal free resolutions of modules over $A$ in the following two cases: (1) $A=\bigoplus _\{p\in \mathbb \{N\}\}A_p$ is an $\mathbb \{N\}$-graded algebra with the degree-0 homogeneous part $A_0=K$; (2) $A$ is an $\mathbb \{N\}$-filtered algebra with the filtration $\lbrace F_pA\rbrace _\{p\in \mathbb \{N\}\}$ determined by a positive-degree function on $A$.},
author = {Li, Huishi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {solvable polynomial algebra; Gröbner basis; minimal free resolution},
language = {eng},
number = {4},
pages = {447-503},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On computation of minimal free resolutions over solvable polynomial algebras},
url = {http://eudml.org/doc/276277},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Li, Huishi
TI - On computation of minimal free resolutions over solvable polynomial algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 4
SP - 447
EP - 503
AB - Let $A=K[a_1,\ldots ,a_n]$ be a (noncommutative) solvable polynomial algebra over a field $K$ in the sense of A. Kandri-Rody and V. Weispfenning [Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1–26]. This paper presents a comprehensive study on the computation of minimal free resolutions of modules over $A$ in the following two cases: (1) $A=\bigoplus _{p\in \mathbb {N}}A_p$ is an $\mathbb {N}$-graded algebra with the degree-0 homogeneous part $A_0=K$; (2) $A$ is an $\mathbb {N}$-filtered algebra with the filtration $\lbrace F_pA\rbrace _{p\in \mathbb {N}}$ determined by a positive-degree function on $A$.
LA - eng
KW - solvable polynomial algebra; Gröbner basis; minimal free resolution
UR - http://eudml.org/doc/276277
ER -
References
top- Apel J., Lassner W., 10.1016/S0747-7171(88)80053-1, J. Symbolic Comput. 6 (1988), 361–370. Zbl0663.68044MR0988423DOI10.1016/S0747-7171(88)80053-1
- Adams W.W., Loustaunau P., 10.1090/gsm/003/02, Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994. Zbl0803.13015MR1287608DOI10.1090/gsm/003/02
- Buchberger B., Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen polynomideal, Ph.D. Thesis, University of Innsbruck, 1965. Zbl1245.13020
- Buchberger B., Gröbner bases: An algorithmic method in polynomial ideal theory, in Multidimensional Systems Theory (Bose, N.K., ed.), Reidel Dordrecht, 1985, pp. 184–232. Zbl0587.13009
- Becker T., Weispfenning V., Gröbner Bases, Springer, New York, 1993. Zbl0772.13010MR1213453
- Capani A., De Dominicis G., Niesi G., Robbiano L., 10.1016/S0022-4049(97)00007-8, J. Pure Appl. Algebra 117/118 (1997), 105–117. Zbl0906.13006MR1457835DOI10.1016/S0022-4049(97)00007-8
- Decker W., Greuel G.-M., Pfister G., Schönemann H., Singular -- — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de(2011).
- Eisenbud D., Commutative Algebra with a View Toward to Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer, New York, 1995. MR1322960
- Faugére J.-C., A new efficient algorithm for computing Gröobner bases without reduction to zero , in Proceedings ISSAC'02, ACM Press, New York, 2002, pp. 75–82. MR2035234
- Fröberg R., An Introduction to Gröbner Bases, Wiley, Chichester, 1997. Zbl0997.13500MR1483316
- Galligo A., Some algorithmic questions on ideals of differential operators, Proc. EUROCAL'85, Lecture Notes in Comput. Sci., 204, Springer, Berlin, 1985, pp. 413–421. Zbl0634.16001MR0826576
- Golod E.S., 10.1007/BFb0082019, in Some Current Trends in Algebra (Varna, 1986), Lecture Notes in Mathematics, 1352, Springer, Berlin, 1988, pp. 88–95. Zbl0892.16024MR0981820DOI10.1007/BFb0082019
- Humphreys J.E., Introduction to Lie Algebras and Representation Theory, Springer, New York-Berlin, 1972. Zbl0447.17002MR0323842
- Krähmer U., Notes on Koszul algebras, 2010, http://www.maths.gla.ac.uk/ ukraehmer/connected.pdf.
- Kredel H., Solvable Polynomial Rings, Shaker-Verlag, 1993. Zbl0790.16027
- Kredel H., Pesch M., MAS, modula- algebra system, 1998, http://krum.rz.uni-mannheim.de/mas/.
- Kreuzer M., Robbiano L., 10.1007/978-3-540-70628-1, Springer, Berlin, 2000. MR1790326DOI10.1007/978-3-540-70628-1
- Kreuzer M., Robbiano L., Computational Commutative Algebra , Springer, Berlin, 2005. MR2159476
- Kandri-Rody A., Weispfenning V., 10.1016/S0747-7171(08)80003-X, J. Symbolic Comput. 9 (1990), 1–26. Zbl0715.16010MR1044911DOI10.1016/S0747-7171(08)80003-X
- Levandovskyy V., Non-commutative computer algebra for polynomial algebra: Gröbner bases, applications and implementation, Ph.D. Thesis, TU Kaiserslautern, 2005.
- Li H., 10.1007/b84211, Lecture Note in Mathematics, 1795, Springer, Berlin, 2002. MR1947291DOI10.1007/b84211
- Li H., Gröbner Bases in Ring Theory, World Scientific Publishing Co., Hackensack, NJ, 2012. MR2894019
- Li H., 10.1016/j.jpaa.2012.03.031, J. Pure Appl. Algebra 216 (2012), 2697–2708. MR2943750DOI10.1016/j.jpaa.2012.03.031
- Li H., A note on solvable polynomial algebras, Comput. Sci. J. Moldova 22 (2014), no. 1, 99–109; arXiv:1212.5988 [math.RA]. MR3243257
- Li H., Su C., On (de)homogenized Gröbner bases, Journal of Algebra, Number Theory: Advances and Applications 3 (2010), no. 1, 35–70.
- Li H., Van Oystaeyen F., Zariskian Filtrations, -Monograph in Mathematics, 2, Kluwer Academic Publishers, Dordrecht, 1996. MR1420862
- Li H., Wu Y., 10.1080/00927870008826825, Comm. Algebra 28 (2000), no. 1, 15–32. MR1738569DOI10.1080/00927870008826825
- Schreyer F.O., Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrasschen Divisionsatz, Diplomarbeit, Hamburg, 1980.
- Sun Y. et al., A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras, in Proc. ISSAC'12, ACM Press, New York, 2012, pp. 351–358. Zbl1308.68193MR3206324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.