Displaying similar documents to “On computation of minimal free resolutions over solvable polynomial algebras”

On the r -free values of the polynomial x 2 + y 2 + z 2 + k

Gongrui Chen, Wenxiao Wang (2023)

Czechoslovak Mathematical Journal

Similarity:

Let k be a fixed integer. We study the asymptotic formula of R ( H , r , k ) , which is the number of positive integer solutions 1 x , y , z H such that the polynomial x 2 + y 2 + z 2 + k is r -free. We obtained the asymptotic formula of R ( H , r , k ) for all r 2 . Our result is new even in the case r = 2 . We proved that R ( H , 2 , k ) = c k H 3 + O ( H 9 / 4 + ε ) , where c k > 0 is a constant depending on k . This improves upon the error term O ( H 7 / 3 + ε ) obtained by G.-L. Zhou, Y. Ding (2022).

Polynomials with values which are powers of integers

Rachid Boumahdi, Jesse Larone (2018)

Archivum Mathematicum

Similarity:

Let P be a polynomial with integral coefficients. Shapiro showed that if the values of P at infinitely many blocks of consecutive integers are of the form Q ( m ) , where Q is a polynomial with integral coefficients, then P ( x ) = Q ( R ( x ) ) for some polynomial R . In this paper, we show that if the values of P at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form m q where q is an integer greater than 1, then P ( x ) = ( R ( x ) ) q for some polynomial R ( x ) .

On solvability of finite groups with some s s -supplemented subgroups

Jiakuan Lu, Yanyan Qiu (2015)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is said to be s s -supplemented in G if there exists a subgroup K of G such that G = H K and H K is s -permutable in K . In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group G is solvable if every subgroup of odd prime order of G is s s -supplemented in G , and that G is solvable if and only if every Sylow subgroup of odd order of G is s s -supplemented in G . These results...

On the nontrivial solvability of systems of homogeneous linear equations over in ZFC

Jan Šaroch (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we investigate in ZFC the following compactness question: for which uncountable cardinals κ , an arbitrary nonempty system S of homogeneous -linear equations is nontrivially solvable in provided that each of its subsystems of cardinality less than κ is nontrivially solvable in ?

On the symmetric algebra of certain first syzygy modules

Gaetana Restuccia, Zhongming Tang, Rosanna Utano (2022)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ( x 1 , ... , x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 , ... , x n ] . Assume that n 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R ( Syz 1 ( 𝔪 ) ) of the first syzygy module Syz 1 ( 𝔪 ) of 𝔪 . When the minimal generators of I are all of degree 2, the dimension of Sym R ( Syz 1 ( 𝔪 ) ) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

Enveloping algebras of Slodowy slices and the Joseph ideal

Alexander Premet (2007)

Journal of the European Mathematical Society

Similarity:

Let G be a simple algebraic group over an algebraically closed field 𝕜 of characteristic 0, and 𝔤 = Lie G . Let ( e , h , f ) be an 𝔰 𝔩 2 -triple in 𝔤 with e being a long root vector in 𝔤 . Let ( · , · ) be the G -invariant bilinear form on 𝔤 with ( e , f ) = 1 and let χ 𝔤 * be such that χ ( x ) = ( e , x ) for all x 𝔤 . Let 𝒮 be the Slodowy slice at e through the adjoint orbit of e and let H be the enveloping algebra of 𝒮 ; see [31]. In this article we give an explicit presentation of H by generators and relations. As a consequence we deduce that H contains...

Variations on a question concerning the degrees of divisors of x n - 1

Lola Thompson (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we examine a natural question concerning the divisors of the polynomial x n - 1 : “How often does x n - 1 have a divisor of every degree between 1 and n ?” In a previous paper, we considered the situation when x n - 1 is factored in [ x ] . In this paper, we replace [ x ] with 𝔽 p [ x ] , where p is an arbitrary-but-fixed prime. We also consider those n where this condition holds for all p .

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

On a generalization of the Beiter Conjecture

Bartłomiej Bzdęga (2016)

Acta Arithmetica

Similarity:

We prove that for every ε > 0 and every nonnegative integer w there exist primes p 1 , . . . , p w such that for n = p 1 . . . p w the height of the cyclotomic polynomial Φ n is at least ( 1 - ε ) c w M n , where M n = i = 1 w - 2 p i 2 w - 1 - i - 1 and c w is a constant depending only on w; furthermore l i m w c w 2 - w 0 . 71 . In our construction we can have p i > h ( p 1 . . . p i - 1 ) for all i = 1,...,w and any function h: ℝ₊ → ℝ₊.

Polynomials, sign patterns and Descartes' rule of signs

Vladimir Petrov Kostov (2019)

Mathematica Bohemica

Similarity:

By Descartes’ rule of signs, a real degree d polynomial P with all nonvanishing coefficients with c sign changes and p sign preservations in the sequence of its coefficients ( c + p = d ) has pos c positive and ¬ p negative roots, where pos c ( mod 2 ) and ¬ p ( mod 2 ) . For 1 d 3 , for every possible choice of the sequence of signs of coefficients of P (called sign pattern) and for every pair ( pos , neg ) satisfying these conditions there exists a polynomial P with exactly pos positive and exactly ¬ negative roots (all of them simple). For d 4 ...