# Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗

Siddhartha Mishra; Eitan Tadmor

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

- Volume: 46, Issue: 3, page 661-680
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topMishra, Siddhartha, and Tadmor, Eitan. "Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗." ESAIM: Mathematical Modelling and Numerical Analysis 46.3 (2012): 661-680. <http://eudml.org/doc/276382>.

@article{Mishra2012,

abstract = {We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials. A suitable choice of the potential results in GMD schemes that preserve a discrete version of divergence. First- and second-order divergence preserving GMD schemes are tested on a series of benchmark numerical experiments. They demonstrate the computational efficiency and robustness of the GMD schemes.},

author = {Mishra, Siddhartha, Tadmor, Eitan},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Multidimensional evolution equations; magnetohydrodynamics; constraint transport; central difference schemes; potential-based fluxes; multidimensional evolution equations},

language = {eng},

month = {1},

number = {3},

pages = {661-680},

publisher = {EDP Sciences},

title = {Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗},

url = {http://eudml.org/doc/276382},

volume = {46},

year = {2012},

}

TY - JOUR

AU - Mishra, Siddhartha

AU - Tadmor, Eitan

TI - Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2012/1//

PB - EDP Sciences

VL - 46

IS - 3

SP - 661

EP - 680

AB - We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials. A suitable choice of the potential results in GMD schemes that preserve a discrete version of divergence. First- and second-order divergence preserving GMD schemes are tested on a series of benchmark numerical experiments. They demonstrate the computational efficiency and robustness of the GMD schemes.

LA - eng

KW - Multidimensional evolution equations; magnetohydrodynamics; constraint transport; central difference schemes; potential-based fluxes; multidimensional evolution equations

UR - http://eudml.org/doc/276382

ER -

## References

top- R. Artebrant and M. Torrilhon, Increasing the accuracy of local divergence preserving schemes for MHD. J. Comput. Phys.227 (2008) 3405–3427.
- J. Bálbas and E. Tadmor, Non-oscillatory central schemes for one and two-dimensional magnetohydrodynamics II : High-order semi-discrete schemes. SIAM. J. Sci. Comput.28 (2006) 533–560.
- J. Bálbas, E. Tadmor and C.C. Wu, Non-oscillatory central schemes for one and two-dimensional magnetohydrodynamics I. J. Comput. Phys.201 (2004) 261–285.
- D.S. Balsara, Divergence free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys.174 (2001) 614–648.
- D.S. Balsara and D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys.149 (1999) 270–292.
- J.B. Bell, P. Colella and H.M. Glaz, A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys.85 (1989) 257–283.
- F. Bouchut, C. Klingenberg and K. Waagan, A multi-wave HLL approximate Riemann solver for ideal MHD based on relaxation I- theoretical framework. Numer. Math.108 (2007) 7–42.
- J.U. Brackbill and D.C. Barnes, The effect of nonzero DivB on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys.35 (1980) 426–430.
- M. Brio and C.C. Wu, An upwind differencing scheme for the equations of ideal MHD. J. Comput. Phys.75 (1988) 400–422.
- A.J. Chorin, Numerical solutions of the Navier-Stokes equations. Math. Comput.22 (1968) 745–762.
- W. Dai and P.R. Woodward, A simple finite difference scheme for multi-dimensional magnetohydrodynamic equations. J. Comput. Phys.142 (1998) 331–369.
- H. Deconnik, P.L. Roe and R. Struijs, A multi-dimensional generalization of Roe’s flux difference splitter for Euler equations. Comput. Fluids22 (1993) 215.
- A. Dedner, F. Kemm, D. Kröner, C.D. Munz, T. Schnitzer and M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys.175 (2002) 645–673.
- C. Evans and J.F. Hawley, Simulation of magnetohydrodynamic flow : a constrained transport method. Astrophys. J.332 (1998) 659.
- M. Fey, Multi-dimensional upwingding. (I) The method of transport for solving the Euler equations. J. Comput. Phys.143 (1998) 159–180.
- M. Fey, Multi-dimensional upwingding.(II) Decomposition of Euler equations into advection equations. J. Comput. Phys.143 (1998) 181–199.
- F. Fuchs, S. Mishra and N.H. Risebro, Splitting based finite volume schemes for ideal MHD equations. J. Comput. Phys.228 (2009) 641–660.
- F. Fuchs, A. McMurry, S. Mishra, N.H. Risebro and K. Waagan, Finite volume methods for wave propagation in stratified magneto-atmospheres. Commun. Comput. Phys.7 (2010) 473–509.
- F. Fuchs, A.D. McMurry, S. Mishra, N.H. Risebro and K. Waagan, Approximate Riemann solver and robust high-order finite volume schemes for the MHD equations in multi-dimensions. Commun. Comput. Phys.9 (2011) 324–362.
- S. Gottlieb, C.W. Shu and E. Tadmor, High order time discretizations with strong stability property. SIAM. Rev.43 (2001) 89–112.
- K.F. Gurski, An HLLC-type approximate Riemann solver for ideal Magneto-hydro dynamics. SIAM. J. Sci. Comput.25 (2004) 2165–2187.
- A. Harten, B. Engquist, S. Osher and S.R. Chakravarty, Uniformly high order accurate essentially non-oscillatory schemes. J. Comput. Phys.71 (1987) 231–303.
- A. Kurganov and E. Tadmor, New high resolution central schemes for non-linear conservation laws and convection-diffusion equations. J. Comput. Phys.160 (2000) 241–282.
- R.J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys.131 (1997) 327–353.
- R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge university press, Cambridge (2002).
- T.J. Linde, A three adaptive multi fluid MHD model for the heliosphere. Ph.D. thesis, University of Michigan, Ann-Arbor (1998).
- M. Lukacova-Medvidova, K.W. Morton and G. Warnecke, Evolution Galerkin methods for Hyperbolic systems in two space dimensions. Math. Comput.69 (2000) 1355–1384.
- M. Lukacova-Medvidova, J. Saibertova and G. Warnecke, Finite volume evolution Galerkin methods for Non-linear hyperbolic systems. J. Comput. Phys.183 (2003) 533–562.
- S. Mishra and E. Tadmor, Constraint preserving schemes using potential-based fluxes. I. Multi-dimensional transport equations. Commun. Comput. Phys.9 (2010) 688–710.
- S. Mishra and E. Tadmor, Constraint preserving schemes using potential-based fluxes. II. Genuinely multi-dimensional systems of conservation laws. SIAM J. Numer. Anal.49 (2011) 1023–1045.
- A. Mignoneet al., Pluto : A numerical code for computational astrophysics. Astrophys. J. Suppl.170 (2007) 228–242.
- T. Miyoshi and K. Kusano, A multi-state HLL approximate Riemann solver for ideal magneto hydro dynamics. J. Comput. Phys.208 (2005) 315–344.
- H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys.87 (1990) 408–463.
- S. Noelle, The MOT-ICE : A new high-resolution wave propagation algorithm for multi-dimensional systems of conservation laws based on Fey’s method of transport. J. Comput. Phys.164 (2000) 283–334.
- K.G. Powell, An approximate Riemann solver for magneto-hydro dynamics (that works in more than one space dimension). Technical report, ICASE, Langley, VA (1994) 94–24.
- K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi and D.L. De zeeuw, A solution adaptive upwind scheme for ideal MHD. J. Comput. Phys.154 (1999) 284–309.
- P.L. Roe and D.S. Balsara, Notes on the eigensystem of magnetohydrodynamics. SIAM. J. Appl. Math.56 (1996) 57–67.
- J. Rossmanith, A wave propagation method with constrained transport for shallow water and ideal magnetohydrodynamics. Ph.D. thesis, University of Washington, Seattle (2002).
- D.S. Ryu, F. Miniati, T.W. Jones and A. Frank, A divergence free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J.509 (1998) 244–255.
- C.W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory schemes – II. J. Comput. Phys.83 (1989) 32–78.
- E. Tadmor, Approximate solutions of nonlinear conservation laws, in Advanced Numerical approximations of NonlinearHyperbolic equations, edited by A. Quarteroni. Lecture notes in Mathematics, Springer Verlag (1998) 1–149.
- M. Torrilhon, Locally divergence preserving upwind finite volume schemes for magnetohyrodynamic equations. SIAM. J. Sci. Comput.26 (2005) 1166–1191.
- M. Torrilhon and M. Fey, Constraint-preserving upwind methods for multidimensional advection equations. SIAM. J. Numer. Anal.42 (2004) 1694–1728.
- G. Toth, The DivB = 0 constraint in shock capturing magnetohydrodynamics codes. J. Comput. Phys.161 (2000) 605–652.
- B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys.32 (1979) 101–136.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.