Numerical approximation of the inviscid 3D primitive equations in a limited domain
Qingshan Chen; Ming-Cheng Shiue; Roger Temam; Joseph Tribbia
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 3, page 619-646
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChen, Qingshan, et al. "Numerical approximation of the inviscid 3D primitive equations in a limited domain." ESAIM: Mathematical Modelling and Numerical Analysis 46.3 (2012): 619-646. <http://eudml.org/doc/276386>.
@article{Chen2012,
abstract = {A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.},
author = {Chen, Qingshan, Shiue, Ming-Cheng, Temam, Roger, Tribbia, Joseph},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonviscous primitive equations; limited domains; boundary conditions; transparent boundary conditions; finite difference methods; nonviscous primitive equations},
language = {eng},
month = {1},
number = {3},
pages = {619-646},
publisher = {EDP Sciences},
title = {Numerical approximation of the inviscid 3D primitive equations in a limited domain},
url = {http://eudml.org/doc/276386},
volume = {46},
year = {2012},
}
TY - JOUR
AU - Chen, Qingshan
AU - Shiue, Ming-Cheng
AU - Temam, Roger
AU - Tribbia, Joseph
TI - Numerical approximation of the inviscid 3D primitive equations in a limited domain
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/1//
PB - EDP Sciences
VL - 46
IS - 3
SP - 619
EP - 646
AB - A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
LA - eng
KW - Nonviscous primitive equations; limited domains; boundary conditions; transparent boundary conditions; finite difference methods; nonviscous primitive equations
UR - http://eudml.org/doc/276386
ER -
References
top- C. Cao and E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math.166 (2007) 245–267.
- Q. Chen, J. Laminie, A. Rousseau, R. Temam and J. Tribbia, A 2.5D model for the equations of the ocean and the atmosphere. Anal. Appl. (Singap.)5 (2007) 199–229.
- Q. Chen, R. Temam and J.J. Tribbia, Simulations of the 2.5D inviscid primitive equations in a limited domain. J. Comput. Phys.227 (2008) 9865–9884.
- Q. Chen, M.-C. Shiue and R. Temam, The barotropic mode for the primitive equations. J. Sci. Comput.45 (2010) 167-199.
- A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput.22 (1968) 745–762.
- B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp.31 (1977) 629–651.
- D. Givoli and B. Neta, High-order nonreflecting boundary conditions for the dispersive shallow water equations. J. Comput. Appl. Math.158 (2003) 49–60; Selected papers from the Conference on Computational and Mathematical Methods for Science and Engineering, Alicante (2002).
- J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flow. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045.
- R.L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Math. Comput.47 (1986) 437–459.
- G. Kobelkov, Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations. C. R. Math. Acad. Sci. Paris343 (2006) 283–286.
- G.M. Kobelkov, Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech.9 (2007) 588–610.
- J.L. Lions, R. Temam and S.H. Wang, New formulations of the primitive equations of atmosphere and applications. Nonlinearity5 (1992) 237–288.
- J.L. Lions, R. Temam and S.H. Wang, On the equations of the large-scale ocean. Nonlinearity5 (1992) 1007–1053.
- G. Marchuk, Methods and problems of computational mathematics, Actes du Congres International des Mathematiciens (Nice, 1970)1 (1971) 151–161.
- M. Marion and R. Temam, Navier-Stokes equations : theory and approximation, Handb. Numer. Anal.VI. North-Holland, Amsterdam (1998) 503–688.
- A. McDonald, Transparent boundary conditions for the shallow water equations : testing in a nested environment. Mon. Wea. Rev.131 (2003) 698–705.
- I.M. Navon, B. Neta and M.Y. Hussaini, A perfectly matched layer approach to the linearized shallow water equations models. Mon. Wea. Rev.132 (2004) 1369–1378.
- J. Oliger and A. Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math.35 (1978) 419–446.
- J. Pedlosky, Geophysical fluid dynamics, 2nd edition. Springer (1987).
- M. Petcu, R. Temam and M. Ziane, Mathematical problems for the primitive equations with viscosity. in Handbook of Numerical Analysis. Special Issue on Some Mathematical Problems in Geophysical Fluid Dynamics, Handb. Numer. Anal., edited by R. Temam, P.G. Ciarlet EDs and J.G. Tribbia. Elsevier, New York (2008).
- A. Rousseau, R. Temam and J. Tribbia, Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity. Discrete Contin. Dyn. Syst.13 (2005) 1257–1276.
- A. Rousseau, R. Temam and J. Tribbia, Numerical simulations of the inviscid primitive equations in a limited domain, in Analysis and Simulation of Fluid Dynamics, Advances in Mathematical Fluid Mechanics. Caterina Calgaro and Jean-François Coulombel and Thierry Goudon (2007).
- A. Rousseau, R. Temam and J. Tribbia, The 3D primitive equations in the absence of viscosity : boundary conditions and well-posedness in the linearized case. J. Math. Pure Appl.89 (2008) 297–319.
- A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domains, in Computational Methods for the Oceans and the Atmosphere, Special Volume of the Handbook of Numerical Analysis, edited by P.G. Ciarlet, R. Temam and J. Tribbia, Guest. Elsevier, Amsterdam (2009).
- R. Temam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas frationnaires (ii). Arch. Rational Mech. Anal.33 (1969) 377–385.
- R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci.60 (2003) 2647–2660.
- R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, in Handbook of mathematical fluid dynamics, edited by S. Friedlander and D. Serre. North-Holland (2004).
- J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput.7 (1986) 870–891.
- T.T. Warner, R.A. Peterson and R.E. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc.78 (1997) 2599–2617.
- W. Washington and C. Parkinson, An introduction to three-dimensional climate modelling, 2nd edition. Univ. Sci. Books, Sausalito, CA (2005).
- N.N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag (1971) English translation.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.