Discontinuous Galerkin methods for problems with Dirac delta source∗
Paul Houston; Thomas Pascal Wihler
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 46, Issue: 6, page 1467-1483
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Elsevier (2003).
- T. Apel, O. Benedix, D. Sirch and B. Vexler, A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal.49 (2011) 992–1005.
- R. Araya, E. Behrens and R. Rodríguez. A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math.105 (2006) 193–216.
- D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal.19 (1982) 742–760.
- D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal.39 (2001) 1749–1779.
- R. Becker and R. Rannacher, An optimal control approach to a-posteriori error estimation in finite element methods, edited by A. Iserles. Cambridge University Press. Acta Numerica (2001) 1–102.
- E. Casas, L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math.47 (1985) 627–632.
- M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math.1341 (1988).
- J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, in Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975). Lect. Notes Phys.58 (1976) 207–216.
- K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, edited by A. Iserles. Cambridge University Press. Acta Numerica (1995) 105–158.
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985).
- P. Houston and E. Süli, Adaptive finite element approximation of hyperbolic problems, in Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, edited by T. Barth and H. Deconinck. Lect. Notes Comput. Sci. Eng.25 (2002).
- P. Houston and T.P. Wihler, Second-order elliptic PDE with discontinuous boundary data. IMA J. Numer. Anal.32 (2012) 48–74.
- V. John, A posterioriL2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math.96 (1998) 99–116.
- B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, in Front. Appl. Math. SIAM (2008).
- B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal.39 (2001) 902–931 (electronic).
- R. Scott, Finite element convergence for singular data. Numer. Math.21 (1973/1974) 317–327.
- M.F. Wheeler, An elliptic collocation finite element method with interior penalties. SIAM J. Numer. Anal.15 (1978) 152–161.
- T.P. Wihler and B. Rivière, Discontinuous Galerkin methods for second-order elliptic PDE with low-regularity solutions. J. Sci. Comput.46 (2011) 151–165.