A study of the dynamic of influence through differential equations∗
Emmanuel Maruani; Michel Grabisch; Agnieszka Rusinowska
RAIRO - Operations Research (2012)
- Volume: 46, Issue: 1, page 83-106
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- C. Asavathiratham, Influence model : a tractable representation of networked Markov chains. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2000).
- C. Asavathiratham, S. Roy, B. Lesieutre and G. Verghese, The influence model. IEEE Control Syst. Mag.21 (2001) 52–64.
- R.L. Berger, A necessary and sufficient condition for reaching a consensus using DeGroot’s method. J. Amer. Statist. Assoc.76 (1981) 415–419.
- M.H. DeGroot, Reaching a consensus. J. Amer. Statist. Assoc.69 (1974) 118–121.
- P. DeMarzo, D. Vayanos and J. Zwiebel, Persuasion bias, social influence, and unidimensional opinions. Quart. J. Econ.118 (2003) 909–968.
- N.E. Friedkin and E.C. Johnsen, Social influence and opinions. J. Math. Sociol.15 (1990) 193–206.
- N.E. Friedkin and E.C. Johnsen, Social positions in influence networks. Soc. Networks19 (1997) 209–222.
- B. Golub and M.O. Jackson, Naïve learning in social networks and the wisdom of crowds. American Economic Journal : Microeconomics2 (2010) 112–149.
- M. Grabisch and A. Rusinowska, Measuring influence in command games. Soc. Choice Welfare33 (2009) 177–209.
- M. Grabisch and A. Rusinowska, A model of influence in a social network. Theor. Decis.69 (2010) 69–96.
- M. Grabisch and A. Rusinowska, A model of influence with an ordered set of possible actions. Theor. Decis.69 (2010) 635–656.
- M. Grabisch and A. Rusinowska, Different approaches to influence based on social networks and simple games, in Collective Decision Making : Views from Social Choice and Game Theory, edited by A. van Deemen and A. Rusinowska. Series Theory and Decision Library C 43, Springer-Verlag, Berlin, Heidelberg (2010) 185–209.
- M. Grabisch and A. Rusinowska, Influence functions, followers and command games. Games Econ Behav.72 (2011) 123–138.
- M. Grabisch and A. Rusinowska, A model of influence with a continuum of actions. GATE Working Paper, 2010-04 (2010).
- M. Grabisch and A. Rusinowska, Iterating influence between players in a social network. CES Working Paper, 2010.89, ftp://mse.univ-paris1.fr/pub/mse/CES2010/10089.pdf (2011).
- C. Hoede and R. Bakker, A theory of decisional power. J. Math. Sociol.8 (1982) 309–322.
- X. Hu and L.S. Shapley, On authority distributions in organizations : equilibrium. Games Econ. Behav.45 (2003) 132–152.
- X. Hu and L.S. Shapley, On authority distributions in organizations : controls. Games Econ. Behav.45 (2003) 153–170.
- M.O. Jackson, Social and Economic Networks. Princeton University Press (2008).
- M. Koster, I. Lindner and S. Napel, Voting power and social interaction, in SING7 Conference. Palermo (2010).
- U. Krause, A discrete nonlinear and nonautonomous model of consensus formation, in Communications in Difference Equations, edited by S. Elaydi, G. Ladas, J. Popenda and J. Rakowski. Gordon and Breach, Amsterdam (2000).
- J. Lorenz, A stabilization theorem for dynamics of continuous opinions. Physica A355 (2005) 217–223.
- E. Maruani, Jeux d’influence dans un réseau social. Mémoire de recherche, Centre d’Economie de la Sorbonne, Université Paris 1 (2010).
- A. Rusinowska, Different approaches to influence in social networks. Invited tutorial for the Third International Workshop on Computational Social Choice (COMSOC 2010). Düsseldorf, available at (2010). URIhttp://ccc.cs.uni-duesseldorf.de/COMSOC-2010/slides/invited-rusinowska.pdf