Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators

Jamshad Ahmad; Syed Tauseef Mohyud-Din; H. M. Srivastava; Xiao-Jun Yang

Waves, Wavelets and Fractals (2015)

  • Volume: 1, Issue: 1
  • ISSN: 2449-5557

Abstract

top
In this paper we develop analytical solutions for the Helmholtz and Laplace equations involving local fractional derivative operators. We implement the local fractional decomposition method (LFDM) for finding the exact solutions. The iteration procedure is based upon the local fractional derivative sense. The numerical results, whichwe present in this paper, show that the methodology used provides an efficient and simple tool for solving fractal phenomena arising in mathematical physics and engineering. Several illustrative examples are also provided.

How to cite

top

Jamshad Ahmad, et al. "Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators." Waves, Wavelets and Fractals 1.1 (2015): null. <http://eudml.org/doc/276455>.

@article{JamshadAhmad2015,
abstract = {In this paper we develop analytical solutions for the Helmholtz and Laplace equations involving local fractional derivative operators. We implement the local fractional decomposition method (LFDM) for finding the exact solutions. The iteration procedure is based upon the local fractional derivative sense. The numerical results, whichwe present in this paper, show that the methodology used provides an efficient and simple tool for solving fractal phenomena arising in mathematical physics and engineering. Several illustrative examples are also provided.},
author = {Jamshad Ahmad, Syed Tauseef Mohyud-Din, H. M. Srivastava, Xiao-Jun Yang},
journal = {Waves, Wavelets and Fractals},
keywords = {Partial differential equations; Local fractional derivative operators; Mittag-Leffler function; Local fractional decomposition method (LFDM)},
language = {eng},
number = {1},
pages = {null},
title = {Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators},
url = {http://eudml.org/doc/276455},
volume = {1},
year = {2015},
}

TY - JOUR
AU - Jamshad Ahmad
AU - Syed Tauseef Mohyud-Din
AU - H. M. Srivastava
AU - Xiao-Jun Yang
TI - Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators
JO - Waves, Wavelets and Fractals
PY - 2015
VL - 1
IS - 1
SP - null
AB - In this paper we develop analytical solutions for the Helmholtz and Laplace equations involving local fractional derivative operators. We implement the local fractional decomposition method (LFDM) for finding the exact solutions. The iteration procedure is based upon the local fractional derivative sense. The numerical results, whichwe present in this paper, show that the methodology used provides an efficient and simple tool for solving fractal phenomena arising in mathematical physics and engineering. Several illustrative examples are also provided.
LA - eng
KW - Partial differential equations; Local fractional derivative operators; Mittag-Leffler function; Local fractional decomposition method (LFDM)
UR - http://eudml.org/doc/276455
ER -

References

top
  1. [1] K.M. Kolwankar, A.D. Gangal, Phys. Rev. Lett. 80, 214 (1998).  
  2. [2] A. Carpinteri, B. Chiaia, P. Cornetti, Comput. Method. Appl. Mech. Engrg. 191, 3 (2001).  
  3. [3] F.B. Adda, J. Cresson, J. Math. Anal. Appl. 263, 721 (2001).  
  4. [4] A. Babakhani, V.G. Daftardar, J. Math. Anal. Appl. 270, 66 (2002).  
  5. [5] G. Jumarie, Appl. Math. Lett. 22, 378 (2009). [Crossref] 
  6. [6] W. Chen, H. Sun, X. Zhang, D. Korosak, Comput. Math. Appl. 59, 1754 (2010).  
  7. [7] X.-J. Yang, Local Fractional Functional Analysis and its Applications (Asian Academic Publisher, Hong Kong, PRC, 2011).  
  8. [8] X.-J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, USA, 2012).  
  9. [9] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of Fractional Differential Equations (Elsevier/North- Holloand Science Publishers, Amsterdam, The Netherlands, 2006).  Zbl1092.45003
  10. [10] X.-J. Yang, D. Baleanu, Therm. Sci. 17, 625 (2013). [Crossref] 
  11. [11] X.-J. Yang, H.M. Srivastava, J.-H. He, D. Baleanu, Phys. Lett. A. 377, 1696 (2013).  
  12. [12] J. Ahmad, S.T. Mohyud-Din, Proc. Pakistan Acad. Sci. 52, 71 (2015).  
  13. [13] Y.-J. Yang, D. Baleanu, X.J. Yang, Abstr. Appl. Anal. 2013, Art. ID 202650 (2013).  
  14. [14] A.K. Golmankhaneh, V. Fazlollahi, D. Baleanu, Rom. Rep. Phys. 65, 93 (2013).  
  15. [15] Y.-J. Hao, H.M. Srivastava, H. Jafari, X.-J. Yang, Adv. Math. Phys. 2013, 754248 (2013).  
  16. [16] J.-H. He, Internat. J. Non-Linear Mech. 34, 708 (1999).  
  17. [17] Y. Khan, S.T. Mohyud-Din, Internat. J. Nonlinear Sci. Numer. Simulat. 12, 1103, (2010).  
  18. [18] J. Hristov, Therm. Sci. 14, 291 (2010). [Crossref] 
  19. [19] J. Ahmad, S.T. Mohyud-Din, Plus One. 9, Article ID e109127 (2014). [Crossref] 
  20. [20] H. Jafari, S. Seifi, Commun. Nonlinear Sci. 14, 2006 (2009). [Crossref] 
  21. [21] S. Zhang, H.-Q. Zhang, Phys. Lett. A, 375, 1069 (2011).  
  22. [22] Y. Khan, N. Faraz, A. Yildirim, Q.-B.Wu, Comput.Math. Appl. 62, 2273 (2011). [Crossref] 
  23. [23] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, (World Scientific, Boston, USA, 2012).  Zbl1248.26011
  24. [24] C. Li, Y. Wang, Comput. Math. Appl. 57, 1672 (2009). [Crossref] 
  25. [25] H. Jafari, V.G. Daftardar, J. Comput. Appl.Math. 196, 644 (2006).  
  26. [26] S. Momani, Z. Odibat, Appl. Math. Comput. 177, 488 (2006).  
  27. [27] S.S. Ray, R.K. Bera, Appl. Math. Comput. 174, 329 (2006).  
  28. [28] Q. Wang, Appl. Math. Comput. 182, 1048 (2006).  
  29. [29] H. Jafari, V.G. Daftardar, Appl. Math. Comput. 180, 488 (2006).  
  30. [30] M. Safari, D.D. Ganji, M. Moslemi, Comput.Math. Appl. 58, 2091 (2009). [Crossref] 
  31. [31] M. El-Shahed, J. Fract. Calc. 24, 23 (2003).  
  32. [32] X.-J. Yang, D. Baleanu, W.-P. Zhong, Proc. Roman. Acad. Ser. A, 14, 127 (2013).  
  33. [33] X.-J. Yang, D. Baleanu, M. P. Lazareviæ, M. S. Cajiæ, Therm. Sci. 2013, DOI: 10.2298/TSCI130717103Y, (2013). [Crossref] 
  34. [34] A.-M. Yang, Y.-Z. Zhang, Y. Long, Therm. Sci. 17, 707 (2013). [Crossref] 
  35. [35] C.-F. Liu, S.-S. Kong, S.-J. Yuan, Therm. Sci. 17, 715 (2013). [Crossref] 
  36. [36] J. Ahmad, S.T. Mohyud-Din, Life Sci. J. 10, 210 (2013).  
  37. [37] X.-J. Yang, Y.-D. Zhang, Adv. Inform. Tech. Managem. 1, 158 (2012).  
  38. [38] X.-J. Yang, Progr. Nonlinear Sci. 4, 1 (2011).  
  39. [39] M. Liao, X.-J. Yang, Q. Yan, A New viewpoint to Fourier analysis in fractal space (Advances in Applied mathematics and Approximation Theory, Springer, 397, 2013).  
  40. [40] A.-M. Yang, Z.-S. Chen, H.M. Srivastava, X.-J. Yang, Abstr. Appl. Anal. 2013, Article ID 259125 (2013).  
  41. [41] Y.-J. Yang, D. Baleanu, X.-J. Yang, Abstr. Appl. Anal. 2013, Article ID 202650 (2013).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.