The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators”

A remark on local fractional calculus and ordinary derivatives

Ricardo Almeida, Małgorzata Guzowska, Tatiana Odzijewicz (2016)

Open Mathematics

Similarity:

In this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.

Some fractional integral formulas for the Mittag-Leffler type function with four parameters

Praveen Agarwal, Juan J. Nieto (2015)

Open Mathematics

Similarity:

In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.

A detailed analysis for the fundamental solution of fractional vibration equation

Li-Li Liu, Jun-Sheng Duan (2015)

Open Mathematics

Similarity:

In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...

Hybrid fractional integro-differential inclusions

Sotiris K. Ntouyas, Sorasak Laoprasittichok, Jessada Tariboon (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.

Fractional descriptor continuous-time linear systems described by the Caputo-Fabrizio derivative

Tadeusz Kaczorek, Kamil Borawski (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

The Weierstrass-Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo-Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated with a numerical example.

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

Similarity:

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method

Haci Mehmet Baskonus, Hasan Bulut (2015)

Open Mathematics

Similarity:

In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L2 nodal norm and L∞ maximum nodal norm to evaluate...

On a partial Hadamard fractional integral inclusion

Aurelian Cernea (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.