A variation of zero-divisor graphs

Raibatak Sen Gupta; M.K. Sen; Shamik Ghosh

Discussiones Mathematicae - General Algebra and Applications (2015)

  • Volume: 35, Issue: 2, page 159-176
  • ISSN: 1509-9415

How to cite

top

Raibatak Sen Gupta, M.K. Sen, and Shamik Ghosh. "A variation of zero-divisor graphs." Discussiones Mathematicae - General Algebra and Applications 35.2 (2015): 159-176. <http://eudml.org/doc/276462>.

@article{RaibatakSenGupta2015,
abstract = {},
author = {Raibatak Sen Gupta, M.K. Sen, Shamik Ghosh},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {rings; zero-divisor graphs; finite fields; coding sequence of a graph; polynomial representation of a graph},
language = {eng},
number = {2},
pages = {159-176},
title = {A variation of zero-divisor graphs},
url = {http://eudml.org/doc/276462},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Raibatak Sen Gupta
AU - M.K. Sen
AU - Shamik Ghosh
TI - A variation of zero-divisor graphs
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2015
VL - 35
IS - 2
SP - 159
EP - 176
AB -
LA - eng
KW - rings; zero-divisor graphs; finite fields; coding sequence of a graph; polynomial representation of a graph
UR - http://eudml.org/doc/276462
ER -

References

top
  1. [1] D.D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514. doi: 10.1006/jabr.1993.1171 Zbl0798.05067
  2. [2] D.F. Anderson, M.C. Axtell and J.A. Stickles Jr., Zero-divisor graphs in commutative rings, Commutative Algebra: Noetherian and Non-Noetherian Perspectives (2011), 23-45. doi: 10.1007/978-1-4419-6990-3_2 
  3. [3] D.F. Anderson and P. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840 
  4. [4] D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero-divisor graph of a commutative ring II, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York 220 (2001), 61-72. Zbl1035.13004
  5. [5] N. Ashrafi, H.R. Maimani, M.R. Pournaki and S. Yassemi, Unit graphs associated with rings, Comm. Algebra 38 (2010), 2851-2871. doi: 10.1080/00927870903095574 Zbl1219.05150
  6. [6] S.E. Atani, M.S. Kohan and Z.E. Sarvandi, An ideal-based zero-divisor graph of direct products of commutative rings, Discuss. Math. Gen. Algebra Appl. 34 (2014), 45-53. doi: 10.7151/dmgaa.1211 Zbl1301.05163
  7. [7] M. Axtell, J. Stickles and W. Trampbachls, Zero-divisor ideals and realizable zero-divisor graphs, Involve 2 (2009), 17-27. doi: 10.2140/involve.2009.2.17 Zbl1169.13301
  8. [8] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226. doi: 10.1016/0021-8693(88)90202-5 
  9. [9] I. Bozic and Z. Petrovic, Zero-divisor graphs of matrices over commutative rings, Comm. Algebra 37 (2009), 1186-1192. doi: 10.1080/00927870802465951 Zbl1185.16031
  10. [10] N. Ganesan, Properties of rings with a finite number of zero divisors, Math. Annalen 157 (3) (1964), 215-218. doi: 10.1007/BF01362435 Zbl0135.07704
  11. [11] S. Redmond, The zero-divisor graph of a non-commutative ring, International Journal of Commutative Rings 1 (4) (2002), 203-211. Zbl1195.16038
  12. [12] D.B. West, Introduction to Graph Theory (Prentice Hall of India New Delhi, 2003). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.