A note on hypervector spaces

Sanjay Roy; Tapas K. Samanta

Discussiones Mathematicae - General Algebra and Applications (2011)

  • Volume: 31, Issue: 1, page 75-99
  • ISSN: 1509-9415

Abstract

top
The main aim of this paper is to generalize the concept of vector space by the hyperstructure. We generalize some definitions such as hypersubspaces, linear combination, Hamel basis, linearly dependence and linearly independence. A few important results like deletion theorem, extension theorem, dimension theorem have been established in this hypervector space.

How to cite

top

Sanjay Roy, and Tapas K. Samanta. "A note on hypervector spaces." Discussiones Mathematicae - General Algebra and Applications 31.1 (2011): 75-99. <http://eudml.org/doc/276586>.

@article{SanjayRoy2011,
abstract = {The main aim of this paper is to generalize the concept of vector space by the hyperstructure. We generalize some definitions such as hypersubspaces, linear combination, Hamel basis, linearly dependence and linearly independence. A few important results like deletion theorem, extension theorem, dimension theorem have been established in this hypervector space.},
author = {Sanjay Roy, Tapas K. Samanta},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {hyperoperation; hyperfield; hypervector spaces; linear dependent; linear independent; linear dependence; linear independence},
language = {eng},
number = {1},
pages = {75-99},
title = {A note on hypervector spaces},
url = {http://eudml.org/doc/276586},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Sanjay Roy
AU - Tapas K. Samanta
TI - A note on hypervector spaces
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2011
VL - 31
IS - 1
SP - 75
EP - 99
AB - The main aim of this paper is to generalize the concept of vector space by the hyperstructure. We generalize some definitions such as hypersubspaces, linear combination, Hamel basis, linearly dependence and linearly independence. A few important results like deletion theorem, extension theorem, dimension theorem have been established in this hypervector space.
LA - eng
KW - hyperoperation; hyperfield; hypervector spaces; linear dependent; linear independent; linear dependence; linear independence
UR - http://eudml.org/doc/276586
ER -

References

top
  1. [1] M. Krasner, A class of hyperrings and hyperfields, Intern. J. Math. and Math. Sci. 6 (2) (1983), 307-312. doi: 10.1155/S0161171283000265 Zbl0516.16030
  2. [2] F. Marty, Role de la notion d'hypergroupe dans l'étude des groupes non abéliens, Comptes Renclus Acad. Sci. Paris Math. 201 (1935), 636-638. Zbl61.1014.04
  3. [3] F. Marty, Sur les groupes et hypergroupes attachés à une fraction rationnelle, Ann. Sci. de l'Ecole Norm. Sup. 53 (3) (1936), 82-123. Zbl0014.10403
  4. [4] F. Marty, Sur une généralisation de la notion de groupe., in: pages 45-49, '8ème congrès des Mathématiciens Scandinaves', Stockholm 1934. Zbl61.1014.03
  5. [5] A. Nakassis, Expository and survey article recent results in hyperring and hyperfield theory, J. Math. and Math. Sci. 11 (2) (1988), 209-220. doi: 10.1155/S0161171288000250 Zbl0655.16027
  6. [6] P. Raja and S.M. Vaezpour, Normed Hypervector spaces, Iranian Journal of Mathematical Sciences and Informatics 2 (2007), 35-44. Zbl1301.15004
  7. [7] M.K. Sen, Utpal Dasgupta, Hypersemiring, Bull. Cal. Math. Soc. 100 (2) (2008), 143-156. 
  8. [8] M.S. Tallini, A-ipermoduli e spazi ipervettoriali, Rivista di Mat. Pura e Applicata, Universita' di Udine 3 (1988), 1-46. 
  9. [9] M.S. Tallini, Hypervector spaces, Fourth Int. Congress on AHA, Xanthi, Greece (1990), 167-174. Zbl0801.20057
  10. [10] M.S. Tallini, Spazi ipervettoriali fortemente distributivi a sinistra, Rend. Mat. Univ. Roma La Sapienza 11 (VII) (1991), 1-16. 
  11. [11] M.S. Tallini, Matroidal Hypervector spaces, Journal of Geometry 42 (1991), 132-140. doi: 10.1007/BF01231873 Zbl0752.05018
  12. [12] M.S. Tallini, La categoria degli spazi ipervettoriali, Quaderni Sem. Geom. Comb. Dip. Mat. 'G. Castelnuovo' Univ. Di Roma La Sapienza, 110 (1993), 1-17. 
  13. [13] M.S. Tallini, Spazi ipervettoriali deboli e norme in tali spazi. Quaderni Sem. Geom. Comb. Dip. Mat. 'G. Castelnuovo', Univ. Di Roma La Sapienza, 111 (1993), 1-14. 
  14. [14] M.S. Tallini, La categoria degli spazi ipervettoriali, Rivista di Mat. Pura e Applicata, Univ. di Udine, 15 (1994), 97-109. 
  15. [15] M.S. Tallini, Weak hypervector spaces and norms in such spaces, Proc. Int. Congress Algebraic Hyperstructures and Applications, Iasi, Romania, Luglio 1993, Hadronic Press, Palm Harbor, Florida (U.S.A.) (1994), 109-206. 
  16. [16] M.S. Tallini, Characterization of Remarkable Hypervector spaces, Proc. of 8th int. Congress on Algebraic Hyperstructures and Applications, Samotraki, Greece, Sept. 1-9 2002, Spanidis Press, Xanthi, Greece, ISBN 960-87499-5-6 (2003), 231-237. Zbl1036.15003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.