Refinements of inductive inference by Popperian and reliable machines

John Case; Sanjay Jain; Suzanne Ngo Manguelle

Kybernetika (1994)

  • Volume: 30, Issue: 1, page 23-52
  • ISSN: 0023-5954

How to cite

top

Case, John, Jain, Sanjay, and Ngo Manguelle, Suzanne. "Refinements of inductive inference by Popperian and reliable machines." Kybernetika 30.1 (1994): 23-52. <http://eudml.org/doc/27660>.

@article{Case1994,
author = {Case, John, Jain, Sanjay, Ngo Manguelle, Suzanne},
journal = {Kybernetika},
keywords = {unrestricted algorithmic devices; explanatory computer programs; refutability principle},
language = {eng},
number = {1},
pages = {23-52},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Refinements of inductive inference by Popperian and reliable machines},
url = {http://eudml.org/doc/27660},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Case, John
AU - Jain, Sanjay
AU - Ngo Manguelle, Suzanne
TI - Refinements of inductive inference by Popperian and reliable machines
JO - Kybernetika
PY - 1994
PB - Institute of Information Theory and Automation AS CR
VL - 30
IS - 1
SP - 23
EP - 52
LA - eng
KW - unrestricted algorithmic devices; explanatory computer programs; refutability principle
UR - http://eudml.org/doc/27660
ER -

References

top
  1. J. M. Barzdin, Prognostication of automata and functions, Inform. Process. 1 (1971), 81-84. (1971) MR0406777
  2. J. M. Barzdin, Two theorems on the limiting synthesis of functions, In: Theory of Algorithms and Programs, Latvian State University, Riga, 210 (1974), pp. 82-88. In Russian. (1974) MR0505358
  3. J. M. Barzdin, R. Freivalds, On the prediction of general recursive functions, Soviet Math. Dokl. 13 (1972), 1224-1228. (1972) MR0347570
  4. J. M. Barzdin, R. Freivalds, Prediction and limiting synthesis of recursively enumerable classes of functions, Latvijas Valsts Univ. Zimatm. Raksti 210 (1974), 101-111. (1974) MR0505361
  5. L. Blum, M. Blum, Toward a mathematical theory of inductive inference, Inform. and Control 28 (1975), 125-155. (1975) Zbl0375.02028MR0395312
  6. M. Blum, A machine independent theory of the complexity of recursive functions, J. Assoc. Comput. Mach. 14 (1967), 322-336. (1967) Zbl0155.01503MR0235912
  7. J. Case, Periodicity in generations of automata, Math. Systems Theory 8 (1974), 15-32. (1974) Zbl0295.02019MR0389551
  8. J. Case K. J. Chen, S. Jain, Strong separation of learning classes, J. Exper. and Theoret. Artif. Intell. 4 (1992), 281-293. (1992) MR1234664
  9. J. Case K. J. Chen, S. Jain, Strong separation of learning classes, In: Proc. Third International Workshop on Analogical and Inductive Inference, Dagstuhl Castle, Germany, Oct. 1992. (1992) MR1234664
  10. J. Case, S. Ngo Manguelle, Refinements of inductive inference by Popperian machines, Technical Report 152, SUNY/Buffalo 1979. (1979) 
  11. J. Case, C. Smith, Comparison of identification criteria for machine inductive inference, Theoret. Comput. Sci. 25 (1983), 193-220. (1983) Zbl0524.03025MR0693078
  12. R. Daley, On the error correcting power of pluralism in BC-type inductive inference, Theoret. Comput. Sci. 24 (1983), 95-104. (1983) Zbl0582.68020MR0707650
  13. R. P. Daley, Inductive inference hierarchies: Probabilistic vs pluralistic, Lecture Notes in Computer Science 215 (1986), 73-82. (1986) Zbl0648.68089
  14. M. Fulk, A Study of Inductive Inference machines, PhD thesis, SUNY at Buffalo 1985. (1985) 
  15. M. Fulk, Saving the phenomenon: Requirements that inductive machines not contradict known data, Inform. and Comput. 79 (1988), 193-209. (1988) MR0971130
  16. E. M. Gold, Language identification in the limit, Inform. and Control 10 (1067), 447-474. Zbl0259.68032
  17. M. Machtey, P. Young, An Introduction to the General Theory of Algorithms, North Holland, New York 1978. (1978) Zbl0376.68027MR0483344
  18. Y. Marcoux, Composition is almost as good as s-1-1, In: Proc. Structure in Complexity Theory--Fourth Annual Conference. IEEE Computer Society Press, 1989. (1989) 
  19. E. Minicozzi, Some natural properties of strong identification in inductive inference, Theoret. Comput. Sci. (1976), 345-360. (1976) Zbl0373.68051MR0505370
  20. D. Osherson M. Stob, S. Weinstein, Systems that Learn, An Introduction to Learning Theory for Cognitive and Computer Scientists, MIT Press, Cambridge, Mass. 1986. (1986) 
  21. L. Pitt, C. Smith, Probability and plurality for aggregations of learning machines, Inform. and Comput. 77 (1988), 77-92. (1988) Zbl0646.68096MR0937376
  22. K. Podnieks, Comparing various concepts of function prediction. Part I, Theory of Algorithms and Programs 210 (1974), 68-81. (1974) 
  23. K. Popper, The Logic of Scientific Discovery, Harper Torch Books, New York 1968. (1968) 
  24. G. Riccardi, The Independence of Control Structures in Abstract Programming Systems, PhD thesis, SUNY at Buffalo 1980. (1980) MR0624874
  25. G. Riccardi, The independence of control structures in abstract programming systems, J. Comput. System Sci. 22 (1981), 107-143. (1981) Zbl0467.68009MR0624874
  26. H. Rogers, Gödel numberings of partial recursive functions, J. Symbolic Logic 23 (1958), 331-341. (1958) MR0103821
  27. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw Hill, New York 1967. Reprinted, MIT Press 1987. (1967) Zbl0183.01401MR0886890
  28. J. Royer, A Connotational Theory of Program Structure, (Lecture Notes in Computer Science 273.) Springer-Verlag, Berlin 1987. (1987) Zbl0625.68018MR0909897
  29. C. Smith, The power of pluralism for automatic program synthesis, J. Assoc. Math. Comput. Mach. 29 (1982), 1144-1165. (1982) Zbl0496.68065MR0674261
  30. T. Zeugmann, A-posteriori characterizations in inductive inference of recursive functions, Electron. Informationsverarb. u. Kybernetik 19 (1983), 559-594. (1983) Zbl0542.03020MR0746510

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.