Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions

Saïd Abbas; Eman Alaidarous; Wafaa Albarakati; Mouffak Benchohra

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2015)

  • Volume: 35, Issue: 2, page 105-122
  • ISSN: 1509-9407

Abstract

top
In this paper we use the upper and lower solutions method combined with Schauder's fixed point theorem and a fixed point theorem for condensing multivalued maps due to Martelli to investigate the existence of solutions for some classes of partial Hadamard fractional integral equations and inclusions.

How to cite

top

Saïd Abbas, et al. "Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 35.2 (2015): 105-122. <http://eudml.org/doc/276613>.

@article{SaïdAbbas2015,
abstract = {In this paper we use the upper and lower solutions method combined with Schauder's fixed point theorem and a fixed point theorem for condensing multivalued maps due to Martelli to investigate the existence of solutions for some classes of partial Hadamard fractional integral equations and inclusions.},
author = {Saïd Abbas, Eman Alaidarous, Wafaa Albarakati, Mouffak Benchohra},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {functional integral equation; integral inclusion; Hadamard partial fractional integral; condensing multivalued map; existence; upper solution; lower solution; fixed point; fractional random differential equation; left-sided mixed Riemann-Liouville integral; Caputo fractional order derivative; Darboux problem; random solution; stability},
language = {eng},
number = {2},
pages = {105-122},
title = {Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions},
url = {http://eudml.org/doc/276613},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Saïd Abbas
AU - Eman Alaidarous
AU - Wafaa Albarakati
AU - Mouffak Benchohra
TI - Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2015
VL - 35
IS - 2
SP - 105
EP - 122
AB - In this paper we use the upper and lower solutions method combined with Schauder's fixed point theorem and a fixed point theorem for condensing multivalued maps due to Martelli to investigate the existence of solutions for some classes of partial Hadamard fractional integral equations and inclusions.
LA - eng
KW - functional integral equation; integral inclusion; Hadamard partial fractional integral; condensing multivalued map; existence; upper solution; lower solution; fixed point; fractional random differential equation; left-sided mixed Riemann-Liouville integral; Caputo fractional order derivative; Darboux problem; random solution; stability
UR - http://eudml.org/doc/276613
ER -

References

top
  1. [1] S. Abbas and M. Benchohra, Fractional order integral equations of two independent variables, Appl. Math. Comput. 227 (2014), 755-761. doi: 10.1016/j.amc.2013.10.086 
  2. [2] S. Abbas and M. Benchohra, Upper and lower solutions method for the Darboux problem for fractional order partial differential inclusions, Int. J. Modern Math. 5 (3) (2010), 327-338. Zbl1244.35157
  3. [3] S. Abbas and M. Benchohra, Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order, Nonlinear Anal. Hybrid Syst. 4 (2010), 406-413. doi: 10.1016/j.nahs.2009.10.004 Zbl1202.35340
  4. [4] S. Abbas and M. Benchohra, Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations, Acta Univ. Palacki. Olomuc. 51 (2) (2012), 5-18. Zbl1302.35393
  5. [5] S. Abbas and M. Benchohra, The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses, Discuss. Math. Differ. Incl. Control Optim. 30 (1) (2010), 141-161. doi: 10.7151/dmdico.1116 Zbl1203.26005
  6. [6] S. Abbas, M. Benchohra and A. Hammoudi, Upper, lower solutions method and extremal solutions for impulsive discontinuous partial fractional differential inclusions, Panamerican Math. J. 24 (1) (2014), 31-52. Zbl1296.26025
  7. [7] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations (Springer, New York, 2012). doi: 10.1007/978-1-4614-4036-9 
  8. [8] S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations (Nova Science Publishers, New York, 2015). 
  9. [9] S. Abbas, M. Benchohra and J.J. Trujillo, Upper and lower solutions method for partial fractional differential inclusions with not instantaneous impulses, Prog. Frac. Diff. Appl. 1 (1) (2015), 11-22. 
  10. [10] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces (Marcel-Dekker, New York, 1980). Zbl0441.47056
  11. [11] M. Benchohra, J. Henderson, S.K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl. 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021 Zbl1209.34096
  12. [12] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions (Hindawi Publishing Corporation, Vol. 2, New York, 2006). doi: 10.1155/9789775945501 Zbl1130.34003
  13. [13] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Fractional calculus in the mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl. 269 (2002), 1-27. doi: 10.1016/S0022-247X(02)00001-X Zbl0995.26007
  14. [14] P.L. Butzer, A.A. Kilbas and J.J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl. 270 (2002), 1-15. doi: 10.1016/S0022-247X(02)00066-5 Zbl1022.26011
  15. [15] K. Deimling, Multivalued Differential Equations (Walter de Gruyter, Berlin-New York, 1992). doi: 10.1515/9783110874228 Zbl0760.34002
  16. [16] S. Djebali, L. Górniewicz and A. Ouahab, Solution Sets for Differential Equations and Inclusions, de Gruyter Series in Nonlinear Analysis and Applications (Walter de Gruyter & Co., Berlin, 2013). doi: 10.1515/9783110293562 
  17. [17] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495 (Kluwer Academic Publishers, Dordrecht, 1999). doi: 10.1007/978-94-015-9195-9 Zbl0937.55001
  18. [18] A. Granas and J. Dugundji, Fixed Point Theory (Springer-Verlag, New York, 2003). doi: 10.1007/978-0-387-21593-8 Zbl1025.47002
  19. [19] J. Hadamard, Essai sur l'étude des fonctions données par leur développment de Taylor, J. Pure Appl. Math. 4 (8) (1892), 101-186. 
  20. [20] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory (Kluwer, Dordrecht, Boston, London, 1997). doi: 10.1007/978-1-4615-6359-4 
  21. [21] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006). Zbl1092.45003
  22. [22] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer Academic Publishers, Dordrecht, Netherlands, 1991). 
  23. [23] G.S. Ladde, V. Lakshmikanthan and A.S. Vatsala, Monotone Iterative Techniques for Nonliner Differential Equations (Pitman Advanced Publishing Program, London, 1985). 
  24. [24] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. Zbl0151.10703
  25. [25] M. Martelli, A Rothe's type theorem for noncompact acyclic-valued map, Boll. Un. Math. Ital. 11 (1975), 70-76. Zbl0314.47035
  26. [26] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations (John Wiley, New York, 1993). Zbl0789.26002
  27. [27] B.G. Pachpatte, Monotone methods for systems of nonlinear hyperbolic problems in two independent variables, Nonlinear Anal. 30 (1997), 235-272. 
  28. [28] S. Pooseh, R. Almeida and D. Torres, Expansion formulas in terms of integer-order derivatives for the hadamard fractional integral and derivative, Numer. Funct. Anal. Optim. 33 (3) (2012), 301-319. doi: 10.1080/01630563.2011.647197 Zbl1248.26013
  29. [29] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Yverdon, 1993). 
  30. [30] A.N. Vityuk, On solutions of hyperbolic differential inclusions with a nonconvex right-hand side, (Russian) Ukran. Mat. Zh. 47 (4) (1995), 531-534; translation in Ukrainian Math. J. 47 (4) (1995), 617-621 (1996). Zbl0937.35194
  31. [31] A.N. Vityuk and A.V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (2004), 318-325. doi: 10.1007/s11072-005-0015-9 Zbl1092.35500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.