On a partial Hadamard fractional integral inclusion

Aurelian Cernea

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2016)

  • Volume: 36, Issue: 2, page 141-153
  • ISSN: 1509-9407

Abstract

top
We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.

How to cite

top

Aurelian Cernea. "On a partial Hadamard fractional integral inclusion." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 36.2 (2016): 141-153. <http://eudml.org/doc/289595>.

@article{AurelianCernea2016,
abstract = {We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.},
author = {Aurelian Cernea},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Hadamard fractional derivative; integral inclusion; decomposable set},
language = {eng},
number = {2},
pages = {141-153},
title = {On a partial Hadamard fractional integral inclusion},
url = {http://eudml.org/doc/289595},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Aurelian Cernea
TI - On a partial Hadamard fractional integral inclusion
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2016
VL - 36
IS - 2
SP - 141
EP - 153
AB - We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.
LA - eng
KW - Hadamard fractional derivative; integral inclusion; decomposable set
UR - http://eudml.org/doc/289595
ER -

References

top
  1. [1] S. Abbas, E. Alaidarous, W. Albarakati and M. Benchohra, Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions, Discuss. Math. DICO 35 (2015), 105-122. doi: 10.7151/dmdico.1172 
  2. [2] S. Abbas, W. Albarakati, M. Benchohra and J. Henderson, Existence and Ulam stabilities for Hadamard fractional integral equations with random effects, Electronic J. Diff. Equations 2016 (2016), 1-12. 
  3. [3] S. Abbas, M. Benchohra and J. Henderson, Partial Hadamard fractional integral equations, Adv. Dynam. Systems Appl 10 (2015), 97-107. 
  4. [4] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, Singapore, 2012, 10.1142/8180. 
  5. [5] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math 90 (1988), 69-86. 
  6. [6] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions (Springer, Berlin,1977). doi: 10.1007/BFb0087685 
  7. [7] A. Cernea, On the existence of solutions for nonconvex fractional hyperbolic differential inclusions, Commun. Math. Analysis 9 (2010), 109-120. 
  8. [8] A. Cernea, On an integro-differential inclusion of fractional order, Diff. Equations Dynam. Systems 21 (2013), 225-236. doi: 10.1007/s12591-012-0148-0 
  9. [9] A. Cernea, Filippov lemma for a class of Hadamard-type fractional differential inclusions, Fractional Calculus Appl. Analysis 18 (2015), 163-171. doi: 10.1515/fca-2015-0011 
  10. [10] A.F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621. doi: 10.1137/0305040 
  11. [11] J. Hadamard, Essai sur l'etude des fonctions donnees par leur development de Taylor, J. Math. Pures Appl. 8 (1892), 101-186. 
  12. [12] A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006). 
  13. [13] A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001), 1191-1204. 
  14. [14] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer, Dordrecht, 1991). 
  15. [15] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.