On a partial Hadamard fractional integral inclusion
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2016)
- Volume: 36, Issue: 2, page 141-153
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topAurelian Cernea. "On a partial Hadamard fractional integral inclusion." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 36.2 (2016): 141-153. <http://eudml.org/doc/289595>.
@article{AurelianCernea2016,
abstract = {We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.},
author = {Aurelian Cernea},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Hadamard fractional derivative; integral inclusion; decomposable set},
language = {eng},
number = {2},
pages = {141-153},
title = {On a partial Hadamard fractional integral inclusion},
url = {http://eudml.org/doc/289595},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Aurelian Cernea
TI - On a partial Hadamard fractional integral inclusion
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2016
VL - 36
IS - 2
SP - 141
EP - 153
AB - We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.
LA - eng
KW - Hadamard fractional derivative; integral inclusion; decomposable set
UR - http://eudml.org/doc/289595
ER -
References
top- [1] S. Abbas, E. Alaidarous, W. Albarakati and M. Benchohra, Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions, Discuss. Math. DICO 35 (2015), 105-122. doi: 10.7151/dmdico.1172
- [2] S. Abbas, W. Albarakati, M. Benchohra and J. Henderson, Existence and Ulam stabilities for Hadamard fractional integral equations with random effects, Electronic J. Diff. Equations 2016 (2016), 1-12.
- [3] S. Abbas, M. Benchohra and J. Henderson, Partial Hadamard fractional integral equations, Adv. Dynam. Systems Appl 10 (2015), 97-107.
- [4] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific, Singapore, 2012, 10.1142/8180.
- [5] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math 90 (1988), 69-86.
- [6] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions (Springer, Berlin,1977). doi: 10.1007/BFb0087685
- [7] A. Cernea, On the existence of solutions for nonconvex fractional hyperbolic differential inclusions, Commun. Math. Analysis 9 (2010), 109-120.
- [8] A. Cernea, On an integro-differential inclusion of fractional order, Diff. Equations Dynam. Systems 21 (2013), 225-236. doi: 10.1007/s12591-012-0148-0
- [9] A. Cernea, Filippov lemma for a class of Hadamard-type fractional differential inclusions, Fractional Calculus Appl. Analysis 18 (2015), 163-171. doi: 10.1515/fca-2015-0011
- [10] A.F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621. doi: 10.1137/0305040
- [11] J. Hadamard, Essai sur l'etude des fonctions donnees par leur development de Taylor, J. Math. Pures Appl. 8 (1892), 101-186.
- [12] A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).
- [13] A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc. 38 (2001), 1191-1204.
- [14] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer, Dordrecht, 1991).
- [15] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.