On maximal ideals of pseudo-BCK-algebras

Andrzej Walendziak

Discussiones Mathematicae - General Algebra and Applications (2011)

  • Volume: 31, Issue: 1, page 61-73
  • ISSN: 1509-9415

Abstract

top
We investigate maximal ideals of pseudo-BCK-algebras and give some characterizations of them.

How to cite

top

Andrzej Walendziak. "On maximal ideals of pseudo-BCK-algebras." Discussiones Mathematicae - General Algebra and Applications 31.1 (2011): 61-73. <http://eudml.org/doc/276652>.

@article{AndrzejWalendziak2011,
abstract = {We investigate maximal ideals of pseudo-BCK-algebras and give some characterizations of them.},
author = {Andrzej Walendziak},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {pseudo-BCK-algebra; (maximal) ideal; maximal ideal},
language = {eng},
number = {1},
pages = {61-73},
title = {On maximal ideals of pseudo-BCK-algebras},
url = {http://eudml.org/doc/276652},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Andrzej Walendziak
TI - On maximal ideals of pseudo-BCK-algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2011
VL - 31
IS - 1
SP - 61
EP - 73
AB - We investigate maximal ideals of pseudo-BCK-algebras and give some characterizations of them.
LA - eng
KW - pseudo-BCK-algebra; (maximal) ideal; maximal ideal
UR - http://eudml.org/doc/276652
ER -

References

top
  1. [1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi: 10.1090/S0002-9947-1958-0094302-9 Zbl0084.00704
  2. [2] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Commentationes Mathematicae 42 (2007), 117-126. 
  3. [3] G. Dymek and A. Walendziak, Fuzzy ideals of pseudo-BCK-algebras, submitted. 
  4. [4] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Dordrecht-Boston-London 2000. 
  5. [5] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, p. 961-968 in: 'The Proc. of the Fourth International Symp. on Economic Informatics', Bucharest, Romania 1999. Zbl0985.06007
  6. [6] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, p. 90-92 in: 'Abstracts of the Fifth International Conference FSTA 2000', Slovakia 2000. 
  7. [7] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, p. 97-114 in: 'Proc. of DMTCS'01: Combinatorics, Computability and Logic', Springer, London 2001. doi: 10.1007/978-1-4471-0717-0_9 Zbl0986.06018
  8. [8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras, Multiplae-Valued Logic 6 (2001), 95-135. Zbl1014.06008
  9. [9] P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996). Zbl0937.03030
  10. [10] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998. Zbl0937.03030
  11. [11] R. Halaš and J. Kühr, Deductive systems and annihilators of pseudo-BCK algebras, Ital. J. Pure Appl. Math., submitted. Zbl1184.06011
  12. [12] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22. doi: 10.3792/pja/1195522169 Zbl0156.24812
  13. [13] A. Iorgulescu, Classes of pseudo-BCK algebras, Part I, Journal of Multiplae-Valued Logic and Soft Computing 12 (2006), 71-130. Zbl1147.06011
  14. [14] A. Iorgulescu, Classes of pseudo-BCK algebras, Part II, Journal of Multiplae-Valued Logic and Soft Computing 12 (2006), 575-629. Zbl1154.06011
  15. [15] A. Iorgulescu, Algebras of logic as BCK algebras, submitted. 
  16. [16] K. Isěki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonicae 21 (1976), 351-366. Zbl0355.02041
  17. [17] Y.B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae 57 (2003), 265-270. Zbl1021.06504
  18. [18] J. Kühr, Pseudo-BCK-algebras and related structures, Univerzita Palackého v Olomouci 2007. Zbl1140.06008
  19. [19] J. Kühr, Representable pseudo-BCK-algebras and integral residuated lattices, Journal of Algebra 317 (2007), 354-364. doi: 10.1016/j.jalgebra.2007.07.003 Zbl1140.06008
  20. [20] J. Rachůnek, A non-commutative generalization of MV algebras, Czechoslovak Math. J. 52 (2002), 255-273. Zbl1012.06012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.