A note on good pseudo BL-algebras

Magdalena Wojciechowska-Rysiawa

Discussiones Mathematicae - General Algebra and Applications (2010)

  • Volume: 30, Issue: 2, page 193-205
  • ISSN: 1509-9415

Abstract

top
Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.

How to cite

top

Magdalena Wojciechowska-Rysiawa. "A note on good pseudo BL-algebras." Discussiones Mathematicae - General Algebra and Applications 30.2 (2010): 193-205. <http://eudml.org/doc/276670>.

@article{MagdalenaWojciechowska2010,
abstract = {Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.},
author = {Magdalena Wojciechowska-Rysiawa},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {pseudo BL-algebra; filter; (strongly) bipartite pseudo BL-algebra},
language = {eng},
number = {2},
pages = {193-205},
title = {A note on good pseudo BL-algebras},
url = {http://eudml.org/doc/276670},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Magdalena Wojciechowska-Rysiawa
TI - A note on good pseudo BL-algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2010
VL - 30
IS - 2
SP - 193
EP - 205
AB - Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.
LA - eng
KW - pseudo BL-algebra; filter; (strongly) bipartite pseudo BL-algebra
UR - http://eudml.org/doc/276670
ER -

References

top
  1. [1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi: 10.1090/S0002-9947-1958-0094302-9 Zbl0084.00704
  2. [2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Multiple-Valued Logic 8 (2002), 673-714. Zbl1028.06007
  3. [3] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras II, Multiple-Valued Logic 8 (2002), 717-750. Zbl1028.06008
  4. [4] G. Dymek, Bipartite pseudo MV-algebras, Discussiones Math., General Algebra and Appl. 26 (2006), 183-197. Zbl1130.06006
  5. [5] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Comment. Math. 47 (2007), 117-126. Zbl1177.06016
  6. [6] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a noncommutative extension of MV-algebras, 'The Proceedings of the Fourth International Symposium on Economic Informatics', Bucharest, Romania, May (1999), 961-968. Zbl0985.06007
  7. [7] G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: a noncommutative extension of BL-algebras, 'Abstracts of the Fifth International Conference FSTA 2000', Slovakia (2000), 90-92. 
  8. [8] G. Georgescu and L.L. Leuştean, Some classes of pseudo-BL algebras, J. Austral. Math. Soc. 73 (2002), 127-153. doi: 10.1017/S144678870000851X Zbl1016.03069
  9. [9] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Amsterdam 1998. doi: 10.1007/978-94-011-5300-3 Zbl0937.03030
  10. [10] P. Hájek, Fuzzy logics with noncommutative conjuctions, Journal of Logic and Computation 13 (2003), 469-479. doi: 10.1093/logcom/13.4.469 Zbl1036.03018
  11. [11] P. Hájek, Observations on non-commutative fuzzy logic, Soft Computing 8 (2003), 38-43. doi: 10.1007/s00500-002-0246-y Zbl1075.03009
  12. [12] J. Rachůnek, A non-commutative generalisations of MV-algebras, Math. Slovaca 52 (2002), 255-273. Zbl1012.06012
  13. [13] A. Walendziak and M. Wojciechowska, Bipartite pseudo BL-algebras, Demonstratio Mathematica XLIII (3) (2010), 487-496. Zbl1225.03094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.