A note on good pseudo BL-algebras
Magdalena Wojciechowska-Rysiawa
Discussiones Mathematicae - General Algebra and Applications (2010)
- Volume: 30, Issue: 2, page 193-205
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topMagdalena Wojciechowska-Rysiawa. "A note on good pseudo BL-algebras." Discussiones Mathematicae - General Algebra and Applications 30.2 (2010): 193-205. <http://eudml.org/doc/276670>.
@article{MagdalenaWojciechowska2010,
abstract = {Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.},
author = {Magdalena Wojciechowska-Rysiawa},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {pseudo BL-algebra; filter; (strongly) bipartite pseudo BL-algebra},
language = {eng},
number = {2},
pages = {193-205},
title = {A note on good pseudo BL-algebras},
url = {http://eudml.org/doc/276670},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Magdalena Wojciechowska-Rysiawa
TI - A note on good pseudo BL-algebras
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2010
VL - 30
IS - 2
SP - 193
EP - 205
AB - Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.
LA - eng
KW - pseudo BL-algebra; filter; (strongly) bipartite pseudo BL-algebra
UR - http://eudml.org/doc/276670
ER -
References
top- [1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi: 10.1090/S0002-9947-1958-0094302-9 Zbl0084.00704
- [2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Multiple-Valued Logic 8 (2002), 673-714. Zbl1028.06007
- [3] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras II, Multiple-Valued Logic 8 (2002), 717-750. Zbl1028.06008
- [4] G. Dymek, Bipartite pseudo MV-algebras, Discussiones Math., General Algebra and Appl. 26 (2006), 183-197. Zbl1130.06006
- [5] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Comment. Math. 47 (2007), 117-126. Zbl1177.06016
- [6] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a noncommutative extension of MV-algebras, 'The Proceedings of the Fourth International Symposium on Economic Informatics', Bucharest, Romania, May (1999), 961-968. Zbl0985.06007
- [7] G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: a noncommutative extension of BL-algebras, 'Abstracts of the Fifth International Conference FSTA 2000', Slovakia (2000), 90-92.
- [8] G. Georgescu and L.L. Leuştean, Some classes of pseudo-BL algebras, J. Austral. Math. Soc. 73 (2002), 127-153. doi: 10.1017/S144678870000851X Zbl1016.03069
- [9] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Amsterdam 1998. doi: 10.1007/978-94-011-5300-3 Zbl0937.03030
- [10] P. Hájek, Fuzzy logics with noncommutative conjuctions, Journal of Logic and Computation 13 (2003), 469-479. doi: 10.1093/logcom/13.4.469 Zbl1036.03018
- [11] P. Hájek, Observations on non-commutative fuzzy logic, Soft Computing 8 (2003), 38-43. doi: 10.1007/s00500-002-0246-y Zbl1075.03009
- [12] J. Rachůnek, A non-commutative generalisations of MV-algebras, Math. Slovaca 52 (2002), 255-273. Zbl1012.06012
- [13] A. Walendziak and M. Wojciechowska, Bipartite pseudo BL-algebras, Demonstratio Mathematica XLIII (3) (2010), 487-496. Zbl1225.03094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.