The Soliton-Ricci Flow with variable volume forms

Nefton Pali

Complex Manifolds (2016)

  • Volume: 3, Issue: 1, page 41-144
  • ISSN: 2300-7443

Abstract

top
We introduce a flow of Riemannian metrics and positive volume forms over compact oriented manifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in our previouswork.We still call this new flow, the Soliton-Ricci flow. It corresponds to a forward Ricci type flow up to a gauge transformation. This gauge is generated by the gradient of the density of the volumes. The new Soliton-Ricci flow exist for all times. It represents the gradient flow of Perelman’s W functional with respect to a pseudo-Riemannian structure over the space of metrics and normalized positive volume forms. We obtain an expression of the Hessian of the W functional with respect to such structure. Our expression shows the elliptic nature of this operator in the orthogonal directions to the orbits obtained by the action of the group of diffeomorphism. In the case that initial data is Kähler, the Soliton-Ricci flow over a Fano manifold preserves the Kähler condition and the symplectic form. Over a Fano manifold, the space of tamed complex structures embeds naturally, via the Chern-Ricci map, into the space of metrics and normalized positive volume forms. Over such space the pseudo-Riemannian structure restricts to a Riemannian one. We perform a study of the sign of the restriction of the Hessian of the W functional over such space. This allows us to obtain a finite dimensional reduction of the stability problem for Kähler-Ricci solitons. This reduction represents the solution of this well known problem. A less precise and less geometric version of this result has been obtained recently by the author in [28].

How to cite

top

Nefton Pali. "The Soliton-Ricci Flow with variable volume forms." Complex Manifolds 3.1 (2016): 41-144. <http://eudml.org/doc/276671>.

@article{NeftonPali2016,
abstract = {We introduce a flow of Riemannian metrics and positive volume forms over compact oriented manifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in our previouswork.We still call this new flow, the Soliton-Ricci flow. It corresponds to a forward Ricci type flow up to a gauge transformation. This gauge is generated by the gradient of the density of the volumes. The new Soliton-Ricci flow exist for all times. It represents the gradient flow of Perelman’s W functional with respect to a pseudo-Riemannian structure over the space of metrics and normalized positive volume forms. We obtain an expression of the Hessian of the W functional with respect to such structure. Our expression shows the elliptic nature of this operator in the orthogonal directions to the orbits obtained by the action of the group of diffeomorphism. In the case that initial data is Kähler, the Soliton-Ricci flow over a Fano manifold preserves the Kähler condition and the symplectic form. Over a Fano manifold, the space of tamed complex structures embeds naturally, via the Chern-Ricci map, into the space of metrics and normalized positive volume forms. Over such space the pseudo-Riemannian structure restricts to a Riemannian one. We perform a study of the sign of the restriction of the Hessian of the W functional over such space. This allows us to obtain a finite dimensional reduction of the stability problem for Kähler-Ricci solitons. This reduction represents the solution of this well known problem. A less precise and less geometric version of this result has been obtained recently by the author in [28].},
author = {Nefton Pali},
journal = {Complex Manifolds},
keywords = {Bakry-Emery-Ricci tensor; Chern-Ricci form; Shrinking Ricci solitons; Kähler-Ricci solitons; Perelman’s entropy functional; Variational stability of Perelman’s entropy functional; shrinking Ricci solitons; Perelman's entropy functional; variational stability of Perelman's entropy functional},
language = {eng},
number = {1},
pages = {41-144},
title = {The Soliton-Ricci Flow with variable volume forms},
url = {http://eudml.org/doc/276671},
volume = {3},
year = {2016},
}

TY - JOUR
AU - Nefton Pali
TI - The Soliton-Ricci Flow with variable volume forms
JO - Complex Manifolds
PY - 2016
VL - 3
IS - 1
SP - 41
EP - 144
AB - We introduce a flow of Riemannian metrics and positive volume forms over compact oriented manifolds whose formal limit is a shrinking Ricci soliton. The case of a fixed volume form has been considered in our previouswork.We still call this new flow, the Soliton-Ricci flow. It corresponds to a forward Ricci type flow up to a gauge transformation. This gauge is generated by the gradient of the density of the volumes. The new Soliton-Ricci flow exist for all times. It represents the gradient flow of Perelman’s W functional with respect to a pseudo-Riemannian structure over the space of metrics and normalized positive volume forms. We obtain an expression of the Hessian of the W functional with respect to such structure. Our expression shows the elliptic nature of this operator in the orthogonal directions to the orbits obtained by the action of the group of diffeomorphism. In the case that initial data is Kähler, the Soliton-Ricci flow over a Fano manifold preserves the Kähler condition and the symplectic form. Over a Fano manifold, the space of tamed complex structures embeds naturally, via the Chern-Ricci map, into the space of metrics and normalized positive volume forms. Over such space the pseudo-Riemannian structure restricts to a Riemannian one. We perform a study of the sign of the restriction of the Hessian of the W functional over such space. This allows us to obtain a finite dimensional reduction of the stability problem for Kähler-Ricci solitons. This reduction represents the solution of this well known problem. A less precise and less geometric version of this result has been obtained recently by the author in [28].
LA - eng
KW - Bakry-Emery-Ricci tensor; Chern-Ricci form; Shrinking Ricci solitons; Kähler-Ricci solitons; Perelman’s entropy functional; Variational stability of Perelman’s entropy functional; shrinking Ricci solitons; Perelman's entropy functional; variational stability of Perelman's entropy functional
UR - http://eudml.org/doc/276671
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.