On monadic quantale algebras: basic properties and representation theorems

Sergey A. Solovyov

Discussiones Mathematicae - General Algebra and Applications (2010)

  • Volume: 30, Issue: 1, page 91-118
  • ISSN: 1509-9415

Abstract

top
Motivated by the concept of quantifier (in the sense of P. Halmos) on different algebraic structures (Boolean algebras, Heyting algebras, MV-algebras, orthomodular lattices, bounded distributive lattices) and the resulting notion of monadic algebra, the paper introduces the concept of a monadic quantale algebra, considers its properties and provides several representation theorems for the new structures.

How to cite

top

Sergey A. Solovyov. "On monadic quantale algebras: basic properties and representation theorems." Discussiones Mathematicae - General Algebra and Applications 30.1 (2010): 91-118. <http://eudml.org/doc/276697>.

@article{SergeyA2010,
abstract = {Motivated by the concept of quantifier (in the sense of P. Halmos) on different algebraic structures (Boolean algebras, Heyting algebras, MV-algebras, orthomodular lattices, bounded distributive lattices) and the resulting notion of monadic algebra, the paper introduces the concept of a monadic quantale algebra, considers its properties and provides several representation theorems for the new structures.},
author = {Sergey A. Solovyov},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {m-semilattice; ⋁-lattice; quantale; quantale module; topological system; tropological system; quantale algebra; quantaloid; quantale algebroid; quantifier; monadic quantale algebra; Girard quantale; Q-equivalence relation; Ω-valued set; GL-monoid; commutative integral cl-monoid; m-semilattices},
language = {eng},
number = {1},
pages = {91-118},
title = {On monadic quantale algebras: basic properties and representation theorems},
url = {http://eudml.org/doc/276697},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Sergey A. Solovyov
TI - On monadic quantale algebras: basic properties and representation theorems
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2010
VL - 30
IS - 1
SP - 91
EP - 118
AB - Motivated by the concept of quantifier (in the sense of P. Halmos) on different algebraic structures (Boolean algebras, Heyting algebras, MV-algebras, orthomodular lattices, bounded distributive lattices) and the resulting notion of monadic algebra, the paper introduces the concept of a monadic quantale algebra, considers its properties and provides several representation theorems for the new structures.
LA - eng
KW - m-semilattice; ⋁-lattice; quantale; quantale module; topological system; tropological system; quantale algebra; quantaloid; quantale algebroid; quantifier; monadic quantale algebra; Girard quantale; Q-equivalence relation; Ω-valued set; GL-monoid; commutative integral cl-monoid; m-semilattices
UR - http://eudml.org/doc/276697
ER -

References

top
  1. [1] M. Abad and J. Varela, Free Q-distributive lattices from meet semilattices, Discrete Math. 224 (2000), 1-14. doi: 10.1016/S0012-365X(00)00106-0 Zbl0963.06010
  2. [2] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Math. Struct. Comput. Sci. 3 (1993), 161-227. doi: 10.1017/S0960129500000189 Zbl0823.06011
  3. [3] J. Adámek, H. Herrlich, and G.E. Strecker, Abstract and Concrete Categories: the Joy of Cats, Repr. Theory Appl. Categ. 17 (2006), 1-507. Zbl1113.18001
  4. [4] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, 2nd ed., Springer-Verlag 1992. doi: 10.1007/978-1-4612-4418-9 Zbl0765.16001
  5. [5] L.P. Belluce, R. Grigolia, and A. Lettieri, Representations of monadic MV-algebras., Stud. Log. 81 (1) (2005), 123-144. doi: 10.1007/s11225-005-2805-6 Zbl1093.06008
  6. [6] G. Bezhanishvili, Varieties of monadic Heyting algebras II: Duality theory, Stud. Log. 62 (1) (1999), 21-48. doi: 10.1023/A:1005173628262 Zbl0973.06010
  7. [7] G. Bezhanishvili and J. Harding, Functional monadic Heyting algebras, Algebra Univers. 48 (1) (2002), 1-10. doi: 10.1007/s00012-002-8202-3 Zbl1062.06017
  8. [8] F. Borceux and G. van den Bossche, An essay on noncommutative topology, Topology Appl. 31 (3) (1989), 203-223. doi: 10.1016/0166-8641(89)90018-7 Zbl0683.54007
  9. [9] I. Chajda, R. Halaš and J. Kühr, Semilattice Structures, Research and Exposition in Mathematics, vol. 30, Heldermann Verlag 2007. 
  10. [10] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. doi: 10.1016/0022-247X(68)90057-7 Zbl0167.51001
  11. [11] R. Cignoli, Quantifiers on distributive lattices, Discrete Math. 96 (3) (1991), 183-197. doi: 10.1016/0012-365X(91)90312-P 
  12. [12] R. Cignoli, S. Lafalce, and A. Petrovich, Remarks on Priestley duality for distributive lattices, Order 8 (3) (1991), 299-315. doi: 10.1007/BF00383451 Zbl0754.06006
  13. [13] J. Cīrulis, Quantifiers on multiplicative semilattices, Contr. Gen. Alg. 18 (2008), 31-46. Zbl1147.03035
  14. [14] C. Davis, Modal operators, equivalence relations, and projective algebras, Am. J. Math. 76 (1954), 747-762. doi: 10.2307/2372649 Zbl0057.02303
  15. [15] J.T. Denniston, A. Melton, and S.E. Rodabaugh, Lattice-valued topological systems, Abstracts of the 30th Linz Seminar on Fuzzy Set Theory (U. Bodenhofer, B. De Baets, E.P. Klement, and S. Saminger-Platz, eds.), Johannes Kepler Universität, Linz, 2009, pp. 24-31. 
  16. [16] J.T. Denniston and S.E. Rodabaugh, Functorial relationships between lattice-valued topology and topological systems, to appear in Quaest. Math. Zbl1220.06001
  17. [17] A. Di Nola and R. Grigolia, On monadic MV-algebras, Ann. Pure Appl. Logic 128 (1-3) (2004), 125-139. doi: 10.1016/j.apal.2003.11.031 Zbl1052.06010
  18. [18] G. Georgescu and I. Leuştean, A representation theorem for monadic Pavelka algebras, J. UCS 6 (1) (2000), 105-111. Zbl0963.03088
  19. [19] R. Giles and H. Kummer, A non-commutative generalization of topology, Indiana Univ. Math. J. 21 (1971), 91-102. doi: 10.1512/iumj.1972.21.21008 Zbl0219.54003
  20. [20] J.-Y. Girard, Linear logic, Theor. Comput. Sci. 50 (1987), 1-102. doi: 10.1016/0304-3975(87)90045-4 
  21. [21] J.A. Goguen, The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973), 734-742. Zbl0278.54003
  22. [22] R. Goldblatt, Topoi. The Categorical Analysis of Logic. Rev. Ed., Dover Publications 2006. 
  23. [23] P. Halmos, Algebraic logic I: Monadic Boolean algebras, Compos. Math. 12 (1955), 217-249. Zbl0087.24505
  24. [24] H. Herrlich and G.E. Strecker, Category Theory, 3rd ed., Sig. Ser. Pure Math., vol. 1, Heldermann Verlag 2007. Zbl1125.18300
  25. [25] U. Höhle, M-valued Sets and Sheaves over Integral Commutative CL-Monoids, Applications of category theory to fuzzy subsets (S.E. Rodabaugh, E.P. Klement, and U. Höhle, eds.), Theory and Decision Library: Series B: Mathematical and Statistical Methods, Kluwer Academic Publishers, 14 (1992), 34-72. 
  26. [26] M.F. Janowitz, Quantifiers and orthomodular lattices, Pac. J. Math. 13 (1963), 1241-1249. Zbl0144.25303
  27. [27] P.T. Johnstone, Stone Spaces, Cambridge University Press 1982. 
  28. [28] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Mem. Am. Math. Soc. 309 (1984), 1-71. Zbl0541.18002
  29. [29] D. Kruml and J. Paseka, Algebraic and Categorical Aspects of Quantales, Handbook of Algebra (M. Hazewinkel, ed.), Elsevier 5 (2008), 323-362. Zbl1219.06016
  30. [30] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976), 621-633. Zbl0342.54003
  31. [31] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer-Verlag 1998. 
  32. [32] A. Monteiro and O. Varsavsky, Algebres de heyting monadiques, Actas de las X Jornadas de la Unión Mat. Argentina (1957), 52-62. Zbl0319.02054
  33. [33] C.J. Mulvey, &, Rend. Circ. Mat. Palermo II (12) (1986), 99-104. 
  34. [34] C.J. Mulvey and J.W. Pelletier, A quantisation of the calculus of relations, Canad. Math. Soc. Conf. Proc. 13 (1992), 345-360. Zbl0793.06008
  35. [35] C.J. Mulvey and J.W. Pelletier, On the quantisation of spaces, J. Pure Appl. Algebra 175 (1-3) (2002), 289-325. Zbl1026.06018
  36. [36] J. Paseka, Quantale Modules, Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University Brno, June 1999. 
  37. [37] J. Paseka and J. Rosický, Quantales, Current Research in Operational Quantum Logic: Algebras, Categories, Languages (B. Coecke, D. Moore, and A. Wilce, eds.), Fundamental Theories of Physics, Kluwer Academic Publishers 111 (2000), 245-261. 
  38. [38] A. Petrovich, Distributive lattices with an operator, Stud. Log. 56 (1-2) (1996), 205-224. Zbl0854.06016
  39. [39] P. Resende, Quantales and Observational Semantics, Current Research in Operational Quantum Logic: Algebras, Categories and Languages (B. Coecke, D. Moore, and A. Wilce, eds.), Dordrecht: Kluwer Academic Publishers. Fundam. Theor. Phys. 111 (2000), 263-288. Zbl0963.81003
  40. [40] L. Román, A characterization of quantic quantifiers in orthomodular lattices, Theory Appl. Categ. 16 (2006), 206-217. Zbl1108.03059
  41. [41] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517. Zbl0194.05501
  42. [42] K.I. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Mathematics Series 234, Longman Scientific & Technical 1990. Zbl0703.06007
  43. [43] K.I. Rosenthal, Free quantaloids, J. Pure Appl. Algebra 72 (1) (1991), 67-82. 
  44. [44] K.I. Rosenthal, The Theory of Quantaloids, Pitman Research Notes in Mathematics Series 348, Addison Wesley Longman 1996. Zbl0845.18003
  45. [45] J.D. Rutledge, A Preliminary Investigation of the Infinitely Many-Valued Predicate Calculus, Ph.D. thesis, Cornell University 1959. 
  46. [46] S. Solovjovs, From quantale algebroids to topological spaces, Abstracts of the 29th Linz Seminar on Fuzzy Set Theory (E.P. Klement, S.E. Rodabaugh, and L.N. Stout, eds.), Johannes Kepler Universität, Linz, 2008, pp. 98-101. 
  47. [47] S. Solovyov, From quantale algebroids to topological spaces: fixed- and variable-basis approaches, Fuzzy Sets Syst. 161 (2010), 1270-1287. Zbl1193.54010
  48. [48] S. Solovyov, Variable-basis topological systems versus variable-basis topological spaces, to appear in Soft Comput. Zbl1197.54018
  49. [49] S. Solovyov, On the category Q- Mod, Algebra Univers. 58 (2008), 35-58. Zbl1145.06008
  50. [50] S. Solovyov, A representation theorem for quantale algebras, Contr. Gen. Alg. 18 (2008), 189-198. Zbl1147.06010
  51. [51] I. Uļjane and A.P. Šostak, On a category of L-valued equalities on L-sets, J. Electr. Eng. 55 (12/S) (2004), 60-63. Zbl1070.03035
  52. [52] O. Varsavsky, Quantifiers and equivalence relations, Rev. Mat. Cuyana 2 (1956), 29-51. 
  53. [53] S. Vickers, Topology via Logic, Cambridge University Press 1989. Zbl0668.54001
  54. [54] A.P. Šostak, Fuzzy functions and an extension of the category L-Top of Chang-Goguen L-topological spaces, Simon, Petr (ed.), Proceedings of the 9th Prague topological symposium, Prague, Czech Republic, August 19-25, 2001. Toronto: Topology Atlas, 271-294. Zbl1019.54006
  55. [55] M. Ward, The closure operators of a lattice, Ann. Math. 43 (2) (1942), 191-196. Zbl0063.08179
  56. [56] L.A. Zadeh, Similarity relations and fuzzy orderings, Inf. Sci. 3 (1971), 177-200. Zbl0218.02058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.