On fuzzification of the notion of quantaloid
Kybernetika (2010)
- Volume: 46, Issue: 6, page 1025-1048
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSolovyov, Sergey A.. "On fuzzification of the notion of quantaloid." Kybernetika 46.6 (2010): 1025-1048. <http://eudml.org/doc/196866>.
@article{Solovyov2010,
abstract = {The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee $-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.},
author = {Solovyov, Sergey A.},
journal = {Kybernetika},
keywords = {many-value topology; monadic category; nucleus; quantale; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product; many-valued topology; monadic category; nucleus; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product},
language = {eng},
number = {6},
pages = {1025-1048},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On fuzzification of the notion of quantaloid},
url = {http://eudml.org/doc/196866},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Solovyov, Sergey A.
TI - On fuzzification of the notion of quantaloid
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 6
SP - 1025
EP - 1048
AB - The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee $-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.
LA - eng
KW - many-value topology; monadic category; nucleus; quantale; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product; many-valued topology; monadic category; nucleus; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product
UR - http://eudml.org/doc/196866
ER -
References
top- Abramsky, S., Vickers, S., 10.1017/S0960129500000189, Math. Struct. Comput. Sci. 3 (1993), 161–227. (1993) Zbl0823.06011MR1224222DOI10.1017/S0960129500000189
- Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories: The Joy of Cats, Dover Publications, Mineola, New York 2009. (2009) MR1051419
- Anderson, F. W., Fuller, K. R., Rings and Categories of Modules, Second edition. Springer-Verlag, 1992. (1992) Zbl0765.16001MR1245487
- Betti, R., Kasangian, S., Tree automata and enriched category theory, Rend. Ist. Mat. Univ. Trieste 17 (1985), 71–78. (1985) Zbl0614.68045MR0863557
- Borceux, F., Handbook of Categorical Algebra, Volume 2: Categories and Structures. Cambridge University Press, 1994. (1994) Zbl0911.18001MR1313497
- Brown, C., Gurr, D., 10.1016/0022-4049(93)90169-T, J. Pure Appl. Algebra 85 (1993), 1, 27–42. (1993) Zbl0776.06011MR1207066DOI10.1016/0022-4049(93)90169-T
- Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182–190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
- Dilworth, R. P., Non-commutative residuated lattices, Trans. Amer. math. Soc. 46 (1939), 426–444. (1939) Zbl0022.10402MR0000230
- Gierz, G., Hofmann, K., al., et, Continuous Lattices and Domains, Cambridge University Press, 2003. (2003) Zbl1088.06001MR1975381
- Girard, J., 10.1016/0304-3975(87)90045-4, Theor. Comput. Sci. 50 (1987), 1–102. (1987) Zbl0647.03016DOI10.1016/0304-3975(87)90045-4
- Goguen, J. A., 10.1016/0022-247X(67)90189-8, J. Math. Anal. Appl. 18 (1967), 145–174. (1967) Zbl0145.24404MR0224391DOI10.1016/0022-247X(67)90189-8
- Goguen, J. A., 10.1016/0022-247X(73)90288-6, J. Math. Anal. Appl. 43 (1973), 734–742. (1973) Zbl0278.54003MR0341365DOI10.1016/0022-247X(73)90288-6
- Grillet, P. A., Abstract Algebra, Second edition. Springer-Verlag, 2007. (2007) Zbl1122.00001MR2330890
- Gylys, R., 10.1007/BF02465588, Lith. Math. J. 39 (1999), 4, 376–388. (1999) Zbl0980.18004MR1803001DOI10.1007/BF02465588
- Halmos, P., Algebraic Logic, Chelsea Publishing Company, 1962. (1962) Zbl0101.01101MR0131961
- Herrlich, H., Strecker, G. E., Category Theory, Third edition. Heldermann Verlag, 2007. (2007) Zbl1125.18300MR2377903
- Höhle, U., Quantaloids as categorical basis for many valued mathematics, In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, eds.), Johannes Kepler Universität, Linz 2010, pp. 91–92. (2010)
- Hungerford, T., Algebra, Springer-Verlag, 2003. (2003)
- Johnstone, P. T., Stone Spaces, Cambridge University Press, 1982. (1982) Zbl0499.54001MR0698074
- Joyal, A., Tierney, M., An extension of the Galois theory of Grothendieck, Mem. Am. Math. Soc. 309 (1984), 1–71. (1984) Zbl0541.18002MR0756176
- Kasangian, S., Rosebrugh, R., Decomposition of automata and enriched category theory, Cah. Topologie Géom. Différ. Catég. 27 (1986), 4, 137–143. (1986) Zbl0625.68040MR0885374
- Kelly, G. M., Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), 1–136. (2005) Zbl1086.18001MR2177301
- Kruml, D., Paseka, J., Algebraic and categorical aAspects of quantales, In: Handbook of Algebra (M. Hazewinkel, ed.), 5, Elsevier, 2008, pp. 323–362. (2008) MR2523454
- Lawvere, F. W., Metric spaces, generalized logic and closed categories, Repr. Theory Appl. Categ. 1 (2002), 1–37. (2002) Zbl1078.18501MR1925933
- Lowen, R., 10.1016/0022-247X(76)90029-9, J. Math. Anal. Appl. 56 (1976), 621–633. (1976) Zbl0342.54003MR0440482DOI10.1016/0022-247X(76)90029-9
- Lane, S. Mac, Categories for the Working Mathematician, Second edition. Springer-Verlag, 1998. (1998) MR1712872
- Mitchell, B., 10.1016/0001-8708(72)90002-3, Adv. Math. 8 (1972), 1–161. (1972) Zbl0232.18009MR0294454DOI10.1016/0001-8708(72)90002-3
- Mulvey, C., & Rend, Circ. Mat. Palermo II (1986), 12, 99–104. (1986) MR0853151
- Mulvey, C. J., Pelletier, J. W., 10.1016/S0022-4049(00)00059-1, J. Pure Appl. Algebra 159 (2001), 231–295. (2001) Zbl0983.18007MR1828940DOI10.1016/S0022-4049(00)00059-1
- Mulvey, C. J., Pelletier, J. W., On the quantisation of spaces, J. Pure Appl. Algebra 175 (2002), 1-3, 289–325. (2002) Zbl1026.06018MR1935983
- Paseka, J., Quantale Modules, Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University, Brno 1999. (1999)
- Paseka, J., A note on nuclei of quantale modules, Cah. Topologie Géom. Différ. Catégoriques 43 (2002), 1, 19–34. (2002) Zbl1015.06017MR1892106
- Pitts, A. M., Applications of sup-lattice enriched category theory to sheaf theory, Proc. Lond. Math. Soc. III. 57 (1988), 3, 433–480. (1988) Zbl0619.18005MR0960096
- Rosenthal, K. I., Quantales and Their Applications, Addison Wesley Longman, 1990. (1990) Zbl0703.06007MR1088258
- Rosenthal, K. I., 10.1016/0022-4049(91)90130-T, J. Pure Appl. Algebra 72 (1991), 1, 67–82. (1991) Zbl0729.18007MR1115568DOI10.1016/0022-4049(91)90130-T
- Rosenthal, K. I., 10.1017/S0960129500001146, Math. Struct. Comput. Sci. 2 (1992), 1, 93–108. (1992) Zbl0761.18008MR1159501DOI10.1017/S0960129500001146
- Rosenthal, K. I., 10.1016/0022-4049(92)90085-T, J. Pure Appl. Algebra 77 (1992), 2, 189–205. (1992) Zbl0761.18009MR1149021DOI10.1016/0022-4049(92)90085-T
- Rosenthal, K. I., 10.1007/BF00878445, Appl. Categ. Struct. 3 (1995), 3, 279–301. (1995) Zbl0833.18002MR1354679DOI10.1007/BF00878445
- Rosenthal, K. I., The Theory of Quantaloids, Addison Wesley Longman, 1996. (1996) Zbl0845.18003MR1427263
- Solovjovs, S., Powerset operator foundations for categorically-algebraic fuzzy sets theories, In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, ed.), Johannes Kepler Universität, Linz 2010, pp. 143–151. (2010)
- Solovyov, S., 10.7151/dmgaa.1119, Discuss. Math., Gen. Algebra Appl. 27 (2007), 59–67. (2007) Zbl1141.18005MR2319333DOI10.7151/dmgaa.1119
- Solovyov, S., On coproducts of quantale algebras, Math. Stud. (Tartu) 3 (2008), 115–126. (2008) Zbl1160.06007MR2497770
- Solovyov, S., On the category -Mod, Algebra Univers. 58 (2008), 35–58. (2008) Zbl1145.06008MR2375280
- Solovyov, S., A representation theorem for quantale algebras, Contr. Gen. Alg. 18 (2008), 189–198. (2008) Zbl1147.06010MR2407586
- Solovyov, S., Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst. 159 (2008), 19, 2567–2585. (2008) Zbl1177.54004MR2450327
- Solovyov, S., From quantale algebroids to topological spaces: fixed- and variable-basis approaches, Fuzzy Sets Syst. 161 (2010), 9, 1270–1287. (2010) Zbl1193.54010MR2603069
- Solovyov, S., 10.7151/dmgaa.1164, Discuss. Math., Gen. Algebra Appl. 30 (2010), 1, 91–118. (2010) Zbl1220.03052MR2762580DOI10.7151/dmgaa.1164
- Street, R., 10.1007/BFb0063103, Lect. Notes Math. 420 (1974), 134–180. (1974) Zbl0325.18005MR0354813DOI10.1007/BFb0063103
- Street, R., Cauchy characterization of enriched categories, Repr. Theory Appl. Categ. 4 (2004), 1–16. (2004) Zbl1099.18005MR2048315
- Street, R., Enriched categories and cohomology, Repr. Theory Appl. Categ. 14 (2005), 1–18. (2005) Zbl1085.18010MR2219705
- Stubbe, I., Categorical structures enriched in a quantaloid: categories, distributors and functors, Theory Appl. Categ. 14 (2005), 1–45. (2005) Zbl1079.18005MR2122823
- Stubbe, I., 10.1007/s10485-004-7421-5, Appl. Categ. Struct. 13 (2005), 3, 235–255. (2005) Zbl1093.06013MR2167792DOI10.1007/s10485-004-7421-5
- Stubbe, I., Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories, Cah. Topol. Géom. Différ. Catég. 46 (2005), 2, 99–121. (2005) Zbl1086.18005MR2153892
- Stubbe, I., Categorical structures enriched in a quantaloid: tensored and cotensored categories, Theory Appl. Categ. 16 (2006), 283–306. (2006) Zbl1119.18005MR2223039
- Stubbe, I., -modules are -suplattices, Theory Appl. Categ. 19 (2007), 4, 50–60. (2007) MR2369018
- Ward, M., 10.1215/S0012-7094-37-00351-X, Duke math. J. 3 (1937), 627–636. (1937) Zbl0018.19903MR1546017DOI10.1215/S0012-7094-37-00351-X
- Ward, M., 10.2307/1968634, Ann. Math. 39 (1938), 558–568. (1938) Zbl0019.28902MR1503424DOI10.2307/1968634
- Ward, M., Dilworth, R. P., 10.1090/S0002-9947-1939-1501995-3, Trans. Am. Math. Soc. 45 (1939), 335–354. (1939) Zbl0021.10801MR1501995DOI10.1090/S0002-9947-1939-1501995-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.