On fuzzification of the notion of quantaloid

Sergey A. Solovyov

Kybernetika (2010)

  • Volume: 46, Issue: 6, page 1025-1048
  • ISSN: 0023-5954

Abstract

top
The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of -semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.

How to cite

top

Solovyov, Sergey A.. "On fuzzification of the notion of quantaloid." Kybernetika 46.6 (2010): 1025-1048. <http://eudml.org/doc/196866>.

@article{Solovyov2010,
abstract = {The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee $-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.},
author = {Solovyov, Sergey A.},
journal = {Kybernetika},
keywords = {many-value topology; monadic category; nucleus; quantale; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product; many-valued topology; monadic category; nucleus; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product},
language = {eng},
number = {6},
pages = {1025-1048},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On fuzzification of the notion of quantaloid},
url = {http://eudml.org/doc/196866},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Solovyov, Sergey A.
TI - On fuzzification of the notion of quantaloid
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 6
SP - 1025
EP - 1048
AB - The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee $-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.
LA - eng
KW - many-value topology; monadic category; nucleus; quantale; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product; many-valued topology; monadic category; nucleus; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product
UR - http://eudml.org/doc/196866
ER -

References

top
  1. Abramsky, S., Vickers, S., 10.1017/S0960129500000189, Math. Struct. Comput. Sci. 3 (1993), 161–227. (1993) Zbl0823.06011MR1224222DOI10.1017/S0960129500000189
  2. Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories: The Joy of Cats, Dover Publications, Mineola, New York 2009. (2009) MR1051419
  3. Anderson, F. W., Fuller, K. R., Rings and Categories of Modules, Second edition. Springer-Verlag, 1992. (1992) Zbl0765.16001MR1245487
  4. Betti, R., Kasangian, S., Tree automata and enriched category theory, Rend. Ist. Mat. Univ. Trieste 17 (1985), 71–78. (1985) Zbl0614.68045MR0863557
  5. Borceux, F., Handbook of Categorical Algebra, Volume 2: Categories and Structures. Cambridge University Press, 1994. (1994) Zbl0911.18001MR1313497
  6. Brown, C., Gurr, D., 10.1016/0022-4049(93)90169-T, J. Pure Appl. Algebra 85 (1993), 1, 27–42. (1993) Zbl0776.06011MR1207066DOI10.1016/0022-4049(93)90169-T
  7. Chang, C. L., 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182–190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
  8. Dilworth, R. P., Non-commutative residuated lattices, Trans. Amer. math. Soc. 46 (1939), 426–444. (1939) Zbl0022.10402MR0000230
  9. Gierz, G., Hofmann, K., al., et, Continuous Lattices and Domains, Cambridge University Press, 2003. (2003) Zbl1088.06001MR1975381
  10. Girard, J., 10.1016/0304-3975(87)90045-4, Theor. Comput. Sci. 50 (1987), 1–102. (1987) Zbl0647.03016DOI10.1016/0304-3975(87)90045-4
  11. Goguen, J. A., 10.1016/0022-247X(67)90189-8, J. Math. Anal. Appl. 18 (1967), 145–174. (1967) Zbl0145.24404MR0224391DOI10.1016/0022-247X(67)90189-8
  12. Goguen, J. A., 10.1016/0022-247X(73)90288-6, J. Math. Anal. Appl. 43 (1973), 734–742. (1973) Zbl0278.54003MR0341365DOI10.1016/0022-247X(73)90288-6
  13. Grillet, P. A., Abstract Algebra, Second edition. Springer-Verlag, 2007. (2007) Zbl1122.00001MR2330890
  14. Gylys, R., 10.1007/BF02465588, Lith. Math. J. 39 (1999), 4, 376–388. (1999) Zbl0980.18004MR1803001DOI10.1007/BF02465588
  15. Halmos, P., Algebraic Logic, Chelsea Publishing Company, 1962. (1962) Zbl0101.01101MR0131961
  16. Herrlich, H., Strecker, G. E., Category Theory, Third edition. Heldermann Verlag, 2007. (2007) Zbl1125.18300MR2377903
  17. Höhle, U., Quantaloids as categorical basis for many valued mathematics, In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, eds.), Johannes Kepler Universität, Linz 2010, pp. 91–92. (2010) 
  18. Hungerford, T., Algebra, Springer-Verlag, 2003. (2003) 
  19. Johnstone, P. T., Stone Spaces, Cambridge University Press, 1982. (1982) Zbl0499.54001MR0698074
  20. Joyal, A., Tierney, M., An extension of the Galois theory of Grothendieck, Mem. Am. Math. Soc. 309 (1984), 1–71. (1984) Zbl0541.18002MR0756176
  21. Kasangian, S., Rosebrugh, R., Decomposition of automata and enriched category theory, Cah. Topologie Géom. Différ. Catég. 27 (1986), 4, 137–143. (1986) Zbl0625.68040MR0885374
  22. Kelly, G. M., Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), 1–136. (2005) Zbl1086.18001MR2177301
  23. Kruml, D., Paseka, J., Algebraic and categorical aAspects of quantales, In: Handbook of Algebra (M. Hazewinkel, ed.), 5, Elsevier, 2008, pp. 323–362. (2008) MR2523454
  24. Lawvere, F. W., Metric spaces, generalized logic and closed categories, Repr. Theory Appl. Categ. 1 (2002), 1–37. (2002) Zbl1078.18501MR1925933
  25. Lowen, R., 10.1016/0022-247X(76)90029-9, J. Math. Anal. Appl. 56 (1976), 621–633. (1976) Zbl0342.54003MR0440482DOI10.1016/0022-247X(76)90029-9
  26. Lane, S. Mac, Categories for the Working Mathematician, Second edition. Springer-Verlag, 1998. (1998) MR1712872
  27. Mitchell, B., 10.1016/0001-8708(72)90002-3, Adv. Math. 8 (1972), 1–161. (1972) Zbl0232.18009MR0294454DOI10.1016/0001-8708(72)90002-3
  28. Mulvey, C., & Rend, Circ. Mat. Palermo II (1986), 12, 99–104. (1986) MR0853151
  29. Mulvey, C. J., Pelletier, J. W., 10.1016/S0022-4049(00)00059-1, J. Pure Appl. Algebra 159 (2001), 231–295. (2001) Zbl0983.18007MR1828940DOI10.1016/S0022-4049(00)00059-1
  30. Mulvey, C. J., Pelletier, J. W., On the quantisation of spaces, J. Pure Appl. Algebra 175 (2002), 1-3, 289–325. (2002) Zbl1026.06018MR1935983
  31. Paseka, J., Quantale Modules, Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University, Brno 1999. (1999) 
  32. Paseka, J., A note on nuclei of quantale modules, Cah. Topologie Géom. Différ. Catégoriques 43 (2002), 1, 19–34. (2002) Zbl1015.06017MR1892106
  33. Pitts, A. M., Applications of sup-lattice enriched category theory to sheaf theory, Proc. Lond. Math. Soc. III. 57 (1988), 3, 433–480. (1988) Zbl0619.18005MR0960096
  34. Rosenthal, K. I., Quantales and Their Applications, Addison Wesley Longman, 1990. (1990) Zbl0703.06007MR1088258
  35. Rosenthal, K. I., 10.1016/0022-4049(91)90130-T, J. Pure Appl. Algebra 72 (1991), 1, 67–82. (1991) Zbl0729.18007MR1115568DOI10.1016/0022-4049(91)90130-T
  36. Rosenthal, K. I., 10.1017/S0960129500001146, Math. Struct. Comput. Sci. 2 (1992), 1, 93–108. (1992) Zbl0761.18008MR1159501DOI10.1017/S0960129500001146
  37. Rosenthal, K. I., 10.1016/0022-4049(92)90085-T, J. Pure Appl. Algebra 77 (1992), 2, 189–205. (1992) Zbl0761.18009MR1149021DOI10.1016/0022-4049(92)90085-T
  38. Rosenthal, K. I., 10.1007/BF00878445, Appl. Categ. Struct. 3 (1995), 3, 279–301. (1995) Zbl0833.18002MR1354679DOI10.1007/BF00878445
  39. Rosenthal, K. I., The Theory of Quantaloids, Addison Wesley Longman, 1996. (1996) Zbl0845.18003MR1427263
  40. Solovjovs, S., Powerset operator foundations for categorically-algebraic fuzzy sets theories, In: Abstracts of the 31st Linz Seminar on Fuzzy Set Theory (P. Cintula, E. P. Klement, L. N. Stout, ed.), Johannes Kepler Universität, Linz 2010, pp. 143–151. (2010) 
  41. Solovyov, S., 10.7151/dmgaa.1119, Discuss. Math., Gen. Algebra Appl. 27 (2007), 59–67. (2007) Zbl1141.18005MR2319333DOI10.7151/dmgaa.1119
  42. Solovyov, S., On coproducts of quantale algebras, Math. Stud. (Tartu) 3 (2008), 115–126. (2008) Zbl1160.06007MR2497770
  43. Solovyov, S., On the category Q -Mod, Algebra Univers. 58 (2008), 35–58. (2008) Zbl1145.06008MR2375280
  44. Solovyov, S., A representation theorem for quantale algebras, Contr. Gen. Alg. 18 (2008), 189–198. (2008) Zbl1147.06010MR2407586
  45. Solovyov, S., Sobriety and spatiality in varieties of algebras, Fuzzy Sets Syst. 159 (2008), 19, 2567–2585. (2008) Zbl1177.54004MR2450327
  46. Solovyov, S., From quantale algebroids to topological spaces: fixed- and variable-basis approaches, Fuzzy Sets Syst. 161 (2010), 9, 1270–1287. (2010) Zbl1193.54010MR2603069
  47. Solovyov, S., 10.7151/dmgaa.1164, Discuss. Math., Gen. Algebra Appl. 30 (2010), 1, 91–118. (2010) Zbl1220.03052MR2762580DOI10.7151/dmgaa.1164
  48. Street, R., 10.1007/BFb0063103, Lect. Notes Math. 420 (1974), 134–180. (1974) Zbl0325.18005MR0354813DOI10.1007/BFb0063103
  49. Street, R., Cauchy characterization of enriched categories, Repr. Theory Appl. Categ. 4 (2004), 1–16. (2004) Zbl1099.18005MR2048315
  50. Street, R., Enriched categories and cohomology, Repr. Theory Appl. Categ. 14 (2005), 1–18. (2005) Zbl1085.18010MR2219705
  51. Stubbe, I., Categorical structures enriched in a quantaloid: categories, distributors and functors, Theory Appl. Categ. 14 (2005), 1–45. (2005) Zbl1079.18005MR2122823
  52. Stubbe, I., 10.1007/s10485-004-7421-5, Appl. Categ. Struct. 13 (2005), 3, 235–255. (2005) Zbl1093.06013MR2167792DOI10.1007/s10485-004-7421-5
  53. Stubbe, I., Categorical structures enriched in a quantaloid: regular presheaves, regular semicategories, Cah. Topol. Géom. Différ. Catég. 46 (2005), 2, 99–121. (2005) Zbl1086.18005MR2153892
  54. Stubbe, I., Categorical structures enriched in a quantaloid: tensored and cotensored categories, Theory Appl. Categ. 16 (2006), 283–306. (2006) Zbl1119.18005MR2223039
  55. Stubbe, I., 𝒬 -modules are 𝒬 -suplattices, Theory Appl. Categ. 19 (2007), 4, 50–60. (2007) MR2369018
  56. Ward, M., 10.1215/S0012-7094-37-00351-X, Duke math. J. 3 (1937), 627–636. (1937) Zbl0018.19903MR1546017DOI10.1215/S0012-7094-37-00351-X
  57. Ward, M., 10.2307/1968634, Ann. Math. 39 (1938), 558–568. (1938) Zbl0019.28902MR1503424DOI10.2307/1968634
  58. Ward, M., Dilworth, R. P., 10.1090/S0002-9947-1939-1501995-3, Trans. Am. Math. Soc. 45 (1939), 335–354. (1939) Zbl0021.10801MR1501995DOI10.1090/S0002-9947-1939-1501995-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.