The submaximal clones on the three-element set with finitely many relative R-classes
Erkko Lehtonen; Ágnes Szendrei
Discussiones Mathematicae - General Algebra and Applications (2010)
- Volume: 30, Issue: 1, page 7-33
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topErkko Lehtonen, and Ágnes Szendrei. "The submaximal clones on the three-element set with finitely many relative R-classes." Discussiones Mathematicae - General Algebra and Applications 30.1 (2010): 7-33. <http://eudml.org/doc/276698>.
@article{ErkkoLehtonen2010,
abstract = {For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A if and only if each one is a substitution instance of the other using operations from C. We study the maximal and submaximal clones on a three-element set and determine which of them have only finitely many relative R-classes.},
author = {Erkko Lehtonen, Ágnes Szendrei},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {clone; maximal clone; submaximal clone; Green 's relations; Green's relations},
language = {eng},
number = {1},
pages = {7-33},
title = {The submaximal clones on the three-element set with finitely many relative R-classes},
url = {http://eudml.org/doc/276698},
volume = {30},
year = {2010},
}
TY - JOUR
AU - Erkko Lehtonen
AU - Ágnes Szendrei
TI - The submaximal clones on the three-element set with finitely many relative R-classes
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2010
VL - 30
IS - 1
SP - 7
EP - 33
AB - For each clone C on a set A there is an associated equivalence relation analogous to Green's R-relation, which relates two operations on A if and only if each one is a substitution instance of the other using operations from C. We study the maximal and submaximal clones on a three-element set and determine which of them have only finitely many relative R-classes.
LA - eng
KW - clone; maximal clone; submaximal clone; Green 's relations; Green's relations
UR - http://eudml.org/doc/276698
ER -
References
top- [1] G.A. Burle, The classes of k-valued logics containing all one-variable functions, Diskretnyi Analiz 10 (1967), 3-7. Zbl0147.25304
- [2] J. Demetrovics and J. Bagyinszki, The lattice of linear classes in prime-valued logics, in: J.L. Kulikowski, M. Michalewicz, S.V. Yablonskii, Yu.I. Zhuravlev (eds.), Discrete Mathematics (Warsaw, 1977), Banach Center Publ. 7, PWN, Warsaw (1982), pp. 105-123. Zbl0538.03020
- [3] A. Feigelson and L. Hellerstein, The forbidden projections of unate functions, Discrete Appl. Math. 77 (1997), 221-236. doi: 10.1016/S0166-218X(96)00136-9 Zbl0882.94030
- [4] M.A. Harrison, On the classification of Boolean functions by the general linear and affine groups, J. Soc. Indust. Appl. Math. 12 (2) (1964), 285-299. doi: 10.1137/0112026 Zbl0134.25802
- [5] J. Henno, Green's equivalences in Menger systems, Tartu Riikl. Ül. Toimetised 277 (1971), 37-46.
- [6] D. Lau, Submaximale Klassen von P₃, Elektron. Informationsverarb. Kybernet. 18 (1982), 227-243.
- [7] D. Lau, Function Algebras on Finite Sets, Springer-Verlag, Berlin, Heidelberg 2006. Zbl1105.08001
- [8] E. Lehtonen, Descending chains and antichains of the unary, linear, and monotone subfunction relations, Order 23 (2006), 129-142. doi: 10.1007/s11083-006-9036-y Zbl1124.08002
- [9] E. Lehtonen and Á. Szendrei, Equivalence of operations with respect to discriminator clones, Discrete Math. 309 (2009), 673-685. doi: 10.1016/j.disc.2008.01.003 Zbl1168.08003
- [10] E. Lehtonen and Á. Szendrei, Clones with finitely many relative R-classes, arXiv:0905.1611. Zbl1217.08002
- [11] H. Machida, On closed sets of three-value monotone logical functions, in: B. Csákány, I. Rosenberg (eds.), Finite Algebra and Multiple-Valued Logic (Szeged, 1979), Colloq. Math. Soc. János Bolyai 28, North-Holland, Amsterdam (1981), pp. 441-467.
- [12] S.S. Marchenkov, J. Demetrovics and L. Hannák, Closed classes of self-dual functions in P₃, Metody Diskret. Anal. 34 (1980), 38-73. Zbl0469.03046
- [13] N. Pippenger, Galois theory for minors of finite functions, Discrete Math. 254 (2002), 405-419. doi: 10.1016/S0012-365X(01)00297-7 Zbl1010.06012
- [14] R. Pöschel and L.A. Kalužnin, Funktionen- und Relationenalgebren: Ein Kapitel der diskreten Mathematik, Birkhäuser, Basel, Stuttgart 1979.
- [15] I.G. Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpravy Československé Akad. Věd, Řada Mat. Přírod. Věd 80 (1970), 3-93. Zbl0199.30201
- [16] J. Słupecki, Kryterium pełności wielowartościowych systemów logiki zdań, C.R. Séanc. Soc. Sci. Varsovie, Cl. III 32 (1939), 102-109. English translation: A criterion of fullness of many-valued systems of propositional logic, Studia Logica 30 (1972), 153-157. doi: 10.1007/BF02120845
- [17] Á. Szendrei, Clones in Universal Algebra, Séminaire de mathématiques supérieures 99, Les Presses de l'Université de Montréal, Montréal 1986.
- [18] C. Wang, Boolean minors, Discrete Math. 141 (1995), 237-258. doi: 10.1016/0012-365X(93)E0191-6 Zbl0837.68081
- [19] C. Wang and A.C. Williams, The threshold order of a Boolean function, Discrete Appl. Math. 31 (1991), 51-69. doi: 10.1016/0166-218X(91)90032-R Zbl0728.94015
- [20] S.V. Yablonsky, Functional constructions in a k-valued logic, Trudy Mat. Inst. Steklov. 51 (1958), 5-142.
- [21] I.E. Zverovich, Characterizations of closed classes of Boolean functions in terms of forbidden subfunctions and Post classes, Discrete Appl. Math. 149 (2005), 200-218. doi: 10.1016/j.dam.2004.06.028 Zbl1086.06015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.