Singular -Laplacian third-order BVPs with derivative dependance
Archivum Mathematicum (2016)
- Volume: 052, Issue: 1, page 35-48
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDjebali, Smaïl, and Saifi, Ouiza. "Singular $\phi $-Laplacian third-order BVPs with derivative dependance." Archivum Mathematicum 052.1 (2016): 35-48. <http://eudml.org/doc/276745>.
@article{Djebali2016,
abstract = {This work is devoted to the existence of solutions for a class of singular third-order boundary value problem associated with a $\phi $-Laplacian operator and posed on the positive half-line; the nonlinearity also depends on the first derivative. The upper and lower solution method combined with the fixed point theory guarantee the existence of positive solutions when the nonlinearity is monotonic with respect to its arguments and may have a space singularity; however no Nagumo type condition is assumed. An example of application illustrates the applicability of the existence result.},
author = {Djebali, Smaïl, Saifi, Ouiza},
journal = {Archivum Mathematicum},
keywords = {third order; half-line; $\phi $-Laplacian; singular problem; positive solution; derivative dependance; upper and lower solution},
language = {eng},
number = {1},
pages = {35-48},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Singular $\phi $-Laplacian third-order BVPs with derivative dependance},
url = {http://eudml.org/doc/276745},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Djebali, Smaïl
AU - Saifi, Ouiza
TI - Singular $\phi $-Laplacian third-order BVPs with derivative dependance
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 1
SP - 35
EP - 48
AB - This work is devoted to the existence of solutions for a class of singular third-order boundary value problem associated with a $\phi $-Laplacian operator and posed on the positive half-line; the nonlinearity also depends on the first derivative. The upper and lower solution method combined with the fixed point theory guarantee the existence of positive solutions when the nonlinearity is monotonic with respect to its arguments and may have a space singularity; however no Nagumo type condition is assumed. An example of application illustrates the applicability of the existence result.
LA - eng
KW - third order; half-line; $\phi $-Laplacian; singular problem; positive solution; derivative dependance; upper and lower solution
UR - http://eudml.org/doc/276745
ER -
References
top- Agarwal, R.P., Meehan, M., O’Regan, D., 10.1017/CBO9780511543005.008, Cambridge Tracts in Mathematics, vol. 141, Cambridge University Press, 2001. (2001) Zbl0960.54027MR1825411DOI10.1017/CBO9780511543005.008
- Agarwal, R.P., O’Regan, D., Infinite Interval Problems for Differential, Difference, and Integral Equations, Kluwer Academic Publishers, Dordrecht, 2001. (2001) Zbl0988.34002MR1845855
- Corduneanu, C., Integral Equations and Stability of Feedback Systems, vol. 104, Academic Press, New York, 1973. (1973) Zbl0273.45001MR0358245
- Djebali, S., Mebarki, K., 10.1016/j.camwa.2007.11.023, Comput. Math. Appl. 55 (112) (2008), 2940–2952. (2008) Zbl1142.34316MR2401442DOI10.1016/j.camwa.2007.11.023
- Djebali, S., Mebarki, K., 10.1016/j.amc.2008.08.009, Appl. Math. Comput. 205 (1) (2008), 336–351. (2008) Zbl1183.34039MR2466638DOI10.1016/j.amc.2008.08.009
- Djebali, S., Mebarki, K., 10.1007/s10440-008-9322-3, Acta Appl. Math. 109 (2) (2010), 361–388. (2010) Zbl1195.34042MR2585794DOI10.1007/s10440-008-9322-3
- Djebali, S., Saifi, O., Positive solutions for singular -Laplacian BVPs on the positive half-line, EJQTDE (56) (2009), 24pp. (2009) Zbl1201.34040MR2546349
- Djebali, S., Saifi, O., 10.1007/s10440-009-9466-9, Acta Appl. Math. 110 (2) (2010), 639–665. (2010) MR2610584DOI10.1007/s10440-009-9466-9
- Djebali, S., Saifi, O., Upper and lower solution method for singular Laplacian BVPs with derivative depending nonlinearity on , Commun. Appl. Anal. 14 (4) (2010), 463–480. (2010) MR2757411
- Djebali, S., Saifi, O., Third order BVPs with -Laplacian operators on , Afr. Diaspora J. Math. 16 (1) (2013), 1–17. (2013) Zbl1283.34019MR3091711
- Djebali, S., Saifi, O., 10.4067/S0719-06462014000100010, Cubo 16 (1) (2014), 105–116. (2014) Zbl1319.34038MR3185792DOI10.4067/S0719-06462014000100010
- Guo, Y., Yu, C., Wang, J., 10.1016/j.na.2008.10.126, Nonlinear Anal. 71 (3–4) (2009), 717–722. (2009) Zbl1172.34310MR2527493DOI10.1016/j.na.2008.10.126
- Han, G., Li, F., 10.1016/j.na.2006.03.042, Nonlinear Anal. 66 (11) (2007), 2591–2603. (2007) Zbl1126.34013MR2312608DOI10.1016/j.na.2006.03.042
- Liang, S., Zhang, J., 10.1007/s10440-009-9528-z, Acta Appl. Math. 111 (1) (2010), 27–43. (2010) Zbl1203.34038MR2653048DOI10.1007/s10440-009-9528-z
- Tian, Y., Ge, W., Shan, W., 10.1016/j.camwa.2006.08.035, Comput. Math. Appl. 53 (7) (2007), 1029–1039. (2007) Zbl1131.34019MR2331357DOI10.1016/j.camwa.2006.08.035
- Yan, B., Liu, Y., 10.1016/S0096-3003(02)00801-9, Appl. Math. Comput. 147 (3) (2004), 629–644. (2004) Zbl1045.34009MR2011077DOI10.1016/S0096-3003(02)00801-9
- Yan, B., O’Regan, D., Agarwal, R.P., Positive solutions for second order singular boundary value problems with derivative dependence on infinite intervals, Acta Appl. Math. 103 (1) (2008), 19–57. (2008) Zbl1158.34011MR2415171
- Yang, Y., Zhang, J., 10.1016/j.na.2007.06.035, Nonlinear Anal. 69 (4) (2008), 1364–1375. (2008) Zbl1166.34012MR2426697DOI10.1016/j.na.2007.06.035
- Yang, Y., Zhang, J., 10.1016/j.na.2008.08.005, Nonlinear Anal. 70 (11) (2009), 3966–3977. (2009) Zbl1171.34006MR2515313DOI10.1016/j.na.2008.08.005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.