Linear maps preserving A -unitary operators

Abdellatif Chahbi; Samir Kabbaj; Ahmed Charifi

Mathematica Bohemica (2016)

  • Volume: 141, Issue: 1, page 59-70
  • ISSN: 0862-7959

Abstract

top
Let be a complex Hilbert space, A a positive operator with closed range in ( ) and A ( ) the sub-algebra of ( ) of all A -self-adjoint operators. Assume φ : A ( ) onto itself is a linear continuous map. This paper shows that if φ preserves A -unitary operators such that φ ( I ) = P then ψ defined by ψ ( T ) = P φ ( P T ) is a homomorphism or an anti-homomorphism and ψ ( T ) = ψ ( T ) for all T A ( ) , where P = A + A and A + is the Moore-Penrose inverse of A . A similar result is also true if φ preserves A -quasi-unitary operators in both directions such that there exists an operator T satisfying P φ ( T ) = P .

How to cite

top

Chahbi, Abdellatif, Kabbaj, Samir, and Charifi, Ahmed. "Linear maps preserving $A$-unitary operators." Mathematica Bohemica 141.1 (2016): 59-70. <http://eudml.org/doc/276755>.

@article{Chahbi2016,
abstract = {Let $\mathcal \{H\}$ be a complex Hilbert space, $A$ a positive operator with closed range in $\mathcal \{B\}(\mathcal \{H\})$ and $\mathcal \{B\}_\{A\}(\mathcal \{H\})$ the sub-algebra of $\mathcal \{B\}(\mathcal \{H\})$ of all $A$-self-adjoint operators. Assume $\phi \colon \mathcal \{B\}_\{A\}(\mathcal \{H\})$ onto itself is a linear continuous map. This paper shows that if $\phi $ preserves $A$-unitary operators such that $\phi (I)=P$ then $\psi $ defined by $\psi (T)=P\phi (PT)$ is a homomorphism or an anti-homomorphism and $\psi (T^\{\sharp \})=\psi (T)^\{\sharp \}$ for all $T \in \mathcal \{B\}_\{A\}(\mathcal \{H\})$, where $P=A^\{+\}A$ and $A^\{+\}$ is the Moore-Penrose inverse of $A$. A similar result is also true if $\phi $ preserves $A$-quasi-unitary operators in both directions such that there exists an operator $T$ satisfying $P\phi (T)=P$.},
author = {Chahbi, Abdellatif, Kabbaj, Samir, Charifi, Ahmed},
journal = {Mathematica Bohemica},
keywords = {linear preserver problem; semi-inner product},
language = {eng},
number = {1},
pages = {59-70},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear maps preserving $A$-unitary operators},
url = {http://eudml.org/doc/276755},
volume = {141},
year = {2016},
}

TY - JOUR
AU - Chahbi, Abdellatif
AU - Kabbaj, Samir
AU - Charifi, Ahmed
TI - Linear maps preserving $A$-unitary operators
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 1
SP - 59
EP - 70
AB - Let $\mathcal {H}$ be a complex Hilbert space, $A$ a positive operator with closed range in $\mathcal {B}(\mathcal {H})$ and $\mathcal {B}_{A}(\mathcal {H})$ the sub-algebra of $\mathcal {B}(\mathcal {H})$ of all $A$-self-adjoint operators. Assume $\phi \colon \mathcal {B}_{A}(\mathcal {H})$ onto itself is a linear continuous map. This paper shows that if $\phi $ preserves $A$-unitary operators such that $\phi (I)=P$ then $\psi $ defined by $\psi (T)=P\phi (PT)$ is a homomorphism or an anti-homomorphism and $\psi (T^{\sharp })=\psi (T)^{\sharp }$ for all $T \in \mathcal {B}_{A}(\mathcal {H})$, where $P=A^{+}A$ and $A^{+}$ is the Moore-Penrose inverse of $A$. A similar result is also true if $\phi $ preserves $A$-quasi-unitary operators in both directions such that there exists an operator $T$ satisfying $P\phi (T)=P$.
LA - eng
KW - linear preserver problem; semi-inner product
UR - http://eudml.org/doc/276755
ER -

References

top
  1. Arias, M. L., Corach, G., Gonzalez, M. C., 10.1007/s00020-008-1613-6, Integral Equations Oper. Theory 62 (2008), 11-28. (2008) Zbl1181.46018MR2442900DOI10.1007/s00020-008-1613-6
  2. Arias, M. L., Corach, G., Gonzalez, M. C., Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008), 1460-1475. (2008) Zbl1140.46009MR2388631
  3. Brešar, M., {Š}emrl, P., 10.1006/jfan.1996.0153, J. Funct. Anal. 142 (1996), Article No. 0153, 360-368. (1996) Zbl0873.47002MR1423038DOI10.1006/jfan.1996.0153
  4. Brešar, M., {Š}emrl, P., 10.4153/CJM-1993-025-4, Can. J. Math. 45 (1993), 483-496. (1993) Zbl0796.15001MR1222512DOI10.4153/CJM-1993-025-4
  5. Douglas, R. G., On the operator equation S * X T = X and related topics, Acta Sci. Math. 30 (1969), 19-32. (1969) MR0250106
  6. Douglas, R. G., 10.1090/S0002-9939-1966-0203464-1, Proc. Am. Math. Soc. 17 (1966), 413-415. (1966) Zbl0146.12503MR0203464DOI10.1090/S0002-9939-1966-0203464-1
  7. Frobenius, G., Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Berl. Ber. 1897 German (1897), 994-1015. (1897) 
  8. Herstein, I. N., Topics in Ring Theory, Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). (1969) Zbl0232.16001MR0271135
  9. Li, C.-K., Tsing, N.-K., Linear preserver problems: A brief introduction and some special techniques, Linear Algebra Appl. 162-164 (1992), 217-235. (1992) Zbl0762.15016MR1148401
  10. Mbekhta, M., Linear maps preserving the generalized spectrum, Extr. Math. 22 (2007), 45-54. (2007) Zbl1160.47033MR2368700
  11. Omladič, M., {Š}emrl, P., 10.1090/S0002-9939-1995-1254849-4, Proc. Am. Math. Soc. 123 (1995), 1069-1074. (1995) Zbl0831.47026MR1254849DOI10.1090/S0002-9939-1995-1254849-4
  12. Palmer, T. W., Banach Algebras and the General Theory of * -algebras, II, Encyclopedia of Mathematics and Its Applications 79 Cambridge University Press, Cambridge (2001). (2001) MR1819503
  13. Palmer, T. W., * -representations of U * -algebras, Proc. Int. Symp. on Operator Theory (Indiana Univ., Bloomington, Ind., 1970) 20 Cambridge University Press, Cambridge (2001), 929-933. (2001) MR0410396
  14. Phadke, S. V., Khasbardar, S. K., Thakare, N. K., On QU-operators, Indian J. Pure Appl. Math. 8 (1977), 335-343. (1977) Zbl0367.47015MR0463961
  15. Pierce, S., General introduction: A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), 3-5. (1992) MR1346778
  16. Pt{á}k, V., 10.1007/BF01304613, Manuscr. Math. 6 (1972), 245-290. (1972) Zbl0304.46036MR0296705DOI10.1007/BF01304613
  17. Russo, B., Dye, H. A., 10.1215/S0012-7094-66-03346-1, Duke Math. J. 33 (1966), 413-416. (1966) MR0193530DOI10.1215/S0012-7094-66-03346-1
  18. {Š}emrl, P., 10.4064/sm-105-2-143-149, Stud. Math. 105 (1993), 143-149. (1993) Zbl0810.47001MR1226624DOI10.4064/sm-105-2-143-149
  19. Watkins, W., 10.1016/0024-3795(76)90060-4, Linear Algebra Appl. 14 (1976), 29-35. (1976) Zbl0329.15005MR0480574DOI10.1016/0024-3795(76)90060-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.