Two characterizations of automorphisms on B(X)

Peter Šemrl

Studia Mathematica (1993)

  • Volume: 105, Issue: 2, page 143-149
  • ISSN: 0039-3223

Abstract

top
Let X be an infinite-dimensional Banach space, and let ϕ be a surjective linear map on B(X) with ϕ(I) = I. If ϕ preserves injective operators in both directions then ϕ is an automorphism of the algebra B(X). If X is a Hilbert space, then ϕ is an automorphism of B(X) if and only if it preserves surjective operators in both directions.

How to cite

top

Šemrl, Peter. "Two characterizations of automorphisms on B(X)." Studia Mathematica 105.2 (1993): 143-149. <http://eudml.org/doc/215990>.

@article{Šemrl1993,
abstract = {Let X be an infinite-dimensional Banach space, and let ϕ be a surjective linear map on B(X) with ϕ(I) = I. If ϕ preserves injective operators in both directions then ϕ is an automorphism of the algebra B(X). If X is a Hilbert space, then ϕ is an automorphism of B(X) if and only if it preserves surjective operators in both directions.},
author = {Šemrl, Peter},
journal = {Studia Mathematica},
keywords = {automorphisms on ; automorphism; surjective operators},
language = {eng},
number = {2},
pages = {143-149},
title = {Two characterizations of automorphisms on B(X)},
url = {http://eudml.org/doc/215990},
volume = {105},
year = {1993},
}

TY - JOUR
AU - Šemrl, Peter
TI - Two characterizations of automorphisms on B(X)
JO - Studia Mathematica
PY - 1993
VL - 105
IS - 2
SP - 143
EP - 149
AB - Let X be an infinite-dimensional Banach space, and let ϕ be a surjective linear map on B(X) with ϕ(I) = I. If ϕ preserves injective operators in both directions then ϕ is an automorphism of the algebra B(X). If X is a Hilbert space, then ϕ is an automorphism of B(X) if and only if it preserves surjective operators in both directions.
LA - eng
KW - automorphisms on ; automorphism; surjective operators
UR - http://eudml.org/doc/215990
ER -

References

top
  1. [1] M. D. Choi, D. Hadwin, E. Nordgren, H. Radjavi, and P. Rosenthal, On positive linear maps preserving invertibility, J. Funct. Anal. 59 (1984), 462-469. Zbl0551.46040
  2. [2] M. D. Choi, A. A. Jafarian, and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227-241. Zbl0615.15004
  3. [3] C. Davis and P. Rosenthal, Solving linear operator equations, Canad. J. Math. 26 (1974), 1384-1389. Zbl0297.47011
  4. [4] J. C. Hou, Rank-preserving linear maps on B(X), Science in China (Ser. A) 32 (1989), 929-940. Zbl0686.47030
  5. [5] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. Zbl0589.47003
  6. [6] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor 1954. Zbl0057.01901
  7. [7] K. B. Laursen and P. Vrbová, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math. J. 39 (1989), 730-739. Zbl0715.47003
  8. [8] J. Lindenstrauss, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967-970. Zbl0156.36403
  9. [9] M. Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Canad. J. Math. 11 (1959), 61-66. Zbl0086.01703
  10. [10] M. Omladič, On operators preserving commutativity, J. Funct. Anal. 66 (1986), 105-122. Zbl0587.47051
  11. [12] R. I. Ovsepian and A. Pełczyński, Existence of a fundamental total and bounded biorthogonal sequence, Studia Math. 54 (1975), 149-159. Zbl0317.46019
  12. [13] C. Pearcy and D. Topping, Sums of small number of idempotents, Michigan Math. J. 14 (1967), 453-465. 
  13. [14] H. Radjavi and P. Rosenthal, Invariant Subspaces, Ergeb. Math. Grenzgeb. 77, Springer, Berlin 1973. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.