New a posteriori and -error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems
Applications of Mathematics (2016)
- Volume: 61, Issue: 2, page 135-163
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLu, Zuliang. "New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems." Applications of Mathematics 61.2 (2016): 135-163. <http://eudml.org/doc/276761>.
@article{Lu2016,
abstract = {We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in $L^\{\infty \}(J;L^2(\Omega )) $-norm and $L^2(J;L^2(\Omega ))$-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.},
author = {Lu, Zuliang},
journal = {Applications of Mathematics},
keywords = {a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method; a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method},
language = {eng},
number = {2},
pages = {135-163},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New a posteriori $L^\{\infty \}(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems},
url = {http://eudml.org/doc/276761},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Lu, Zuliang
TI - New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 135
EP - 163
AB - We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in $L^{\infty }(J;L^2(\Omega )) $-norm and $L^2(J;L^2(\Omega ))$-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.
LA - eng
KW - a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method; a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method
UR - http://eudml.org/doc/276761
ER -
References
top- Babuška, I., Strouboulis, T., The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation The Clarendon Press, Oxford University Press, New York (2001). (2001) MR1857191
- Brezzi, F., Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15 Springer, New York (1991). (1991) Zbl0788.73002MR1115205
- Carstensen, C., 10.1090/S0025-5718-97-00837-5, Math. Comput. 66 (1997), 465-476. (1997) Zbl0864.65068MR1408371DOI10.1090/S0025-5718-97-00837-5
- Chen, Y., Huang, Y., Liu, W., Yan, N., 10.1007/s10915-009-9327-8, J. Sci. Comput. 42 (2010), 382-403. (2010) Zbl1203.49042MR2585589DOI10.1007/s10915-009-9327-8
- Chen, Y., Liu, L., Lu, Z., 10.1080/01630563.2010.492046, Numer. Funct. Anal. Optim. 31 (2010), 1135-1157. (2010) Zbl1219.49025MR2738842DOI10.1080/01630563.2010.492046
- Chen, Y., Lu, Z., 10.1016/j.finel.2010.06.011, Finite Elem. Anal. Des. 46 (2010), 957-965. (2010) MR2678160DOI10.1016/j.finel.2010.06.011
- Chen, Y., Lu, Z., 10.1016/j.cma.2009.11.009, Comput. Methods Appl. Mech. Eng. 199 (2010), 1415-1423. (2010) Zbl1231.65152MR2630151DOI10.1016/j.cma.2009.11.009
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- Eriksson, K., Johnson, C., 10.1137/0728003, SIAM J. Numer. Anal. 28 (1991), 43-77. (1991) Zbl0732.65093MR1083324DOI10.1137/0728003
- Hoppe, R. H. W., Iliash, Y., Iyyunni, C., Sweilam, N. H., 10.1163/156939506776382139, J. Numer. Math. 14 (2006), 57-82. (2006) Zbl1104.65066MR2229819DOI10.1163/156939506776382139
- Hou, L. S., Turner, J. C., 10.1007/s002110050146, Numer. Math. 71 (1995), 289-315. (1995) Zbl0827.49002MR1347571DOI10.1007/s002110050146
- Knowles, G., 10.1137/0320032, SIAM J. Control Optimization 20 (1982), 414-427. (1982) Zbl0481.49026MR0652217DOI10.1137/0320032
- Li, R., Liu, W., Ma, H., Tang, T., 10.1137/S0363012901389342, SIAM J. Control Optimization 41 (2002), 1321-1349. (2002) Zbl1034.49031MR1971952DOI10.1137/S0363012901389342
- Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Die Grundlehren der mathematischen Wissenschaften 170 Springer, Berlin (1971). (1971) Zbl0203.09001MR0271512
- Liu, W., Ma, H., Tang, T., Yan, N., 10.1137/S0036142902397090, SIAM J. Numer. Anal. 42 (2004), 1032-1061. (2004) Zbl1085.65054MR2113674DOI10.1137/S0036142902397090
- Liu, W., Yan, N., 10.1137/S0036142999352187, SIAM J. Numer. Anal. 39 (2001), 73-99. (2001) Zbl0988.49018MR1860717DOI10.1137/S0036142999352187
- Liu, W., Yan, N., 10.1023/A:1014239012739, Adv. Comput. Math. 15 (2001), 285-309. (2001) Zbl1008.49024MR1887737DOI10.1023/A:1014239012739
- Liu, W., Yan, N., 10.1137/S0036142901384009, SIAM J. Numer. Anal. 40 (2002), 1850-1869. (2002) Zbl1028.49025MR1950625DOI10.1137/S0036142901384009
- Liu, W., Yan, N., 10.1007/s002110100380, Numer. Math. 93 (2003), 497-521. (2003) Zbl1049.65057MR1953750DOI10.1007/s002110100380
- Lu, Z., Chen, Y., A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems, Adv. Appl. Math. Mech. 1 (2009), 242-256. (2009) Zbl1262.49009MR2520864
- R. S. McKnight, W. E. Bosarge, Jr., 10.1137/0311040, SIAM J. Control Optim. 11 (1973), 510-524. (1973) Zbl0237.65071MR0403754DOI10.1137/0311040
- Milner, F. A., 10.1090/S0025-5718-1985-0777266-1, Math. Comput. 44 (1985), 303-320. (1985) Zbl0567.65079MR0777266DOI10.1090/S0025-5718-1985-0777266-1
- Scott, L. R., Zhang, S., 10.1090/S0025-5718-1990-1011446-7, Math. Comput. 54 (1990), 483-493. (1990) Zbl0696.65007MR1011446DOI10.1090/S0025-5718-1990-1011446-7
- Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics 25 Springer, Berlin (1997). (1997) Zbl0884.65097MR1479170
- Tiba, D., Lectures on the Optimal Control of Elliptic Problems, University of Jyvaskyla Press, Jyvaskyla, Finland (1995). (1995)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.