New a posteriori L ( L 2 ) and L 2 ( L 2 ) -error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems

Zuliang Lu

Applications of Mathematics (2016)

  • Volume: 61, Issue: 2, page 135-163
  • ISSN: 0862-7940

Abstract

top
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L ( J ; L 2 ( Ω ) ) -norm and L 2 ( J ; L 2 ( Ω ) ) -norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.

How to cite

top

Lu, Zuliang. "New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems." Applications of Mathematics 61.2 (2016): 135-163. <http://eudml.org/doc/276761>.

@article{Lu2016,
abstract = {We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in $L^\{\infty \}(J;L^2(\Omega )) $-norm and $L^2(J;L^2(\Omega ))$-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.},
author = {Lu, Zuliang},
journal = {Applications of Mathematics},
keywords = {a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method; a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method},
language = {eng},
number = {2},
pages = {135-163},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New a posteriori $L^\{\infty \}(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems},
url = {http://eudml.org/doc/276761},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Lu, Zuliang
TI - New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 135
EP - 163
AB - We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in $L^{\infty }(J;L^2(\Omega )) $-norm and $L^2(J;L^2(\Omega ))$-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.
LA - eng
KW - a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method; a posteriori error estimate; general optimal control problem; nonlinear parabolic equation; mixed finite element method
UR - http://eudml.org/doc/276761
ER -

References

top
  1. Babuška, I., Strouboulis, T., The Finite Element Method and Its Reliability, Numerical Mathematics and Scientific Computation The Clarendon Press, Oxford University Press, New York (2001). (2001) MR1857191
  2. Brezzi, F., Fortin, M., Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15 Springer, New York (1991). (1991) Zbl0788.73002MR1115205
  3. Carstensen, C., 10.1090/S0025-5718-97-00837-5, Math. Comput. 66 (1997), 465-476. (1997) Zbl0864.65068MR1408371DOI10.1090/S0025-5718-97-00837-5
  4. Chen, Y., Huang, Y., Liu, W., Yan, N., 10.1007/s10915-009-9327-8, J. Sci. Comput. 42 (2010), 382-403. (2010) Zbl1203.49042MR2585589DOI10.1007/s10915-009-9327-8
  5. Chen, Y., Liu, L., Lu, Z., 10.1080/01630563.2010.492046, Numer. Funct. Anal. Optim. 31 (2010), 1135-1157. (2010) Zbl1219.49025MR2738842DOI10.1080/01630563.2010.492046
  6. Chen, Y., Lu, Z., 10.1016/j.finel.2010.06.011, Finite Elem. Anal. Des. 46 (2010), 957-965. (2010) MR2678160DOI10.1016/j.finel.2010.06.011
  7. Chen, Y., Lu, Z., 10.1016/j.cma.2009.11.009, Comput. Methods Appl. Mech. Eng. 199 (2010), 1415-1423. (2010) Zbl1231.65152MR2630151DOI10.1016/j.cma.2009.11.009
  8. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
  9. Eriksson, K., Johnson, C., 10.1137/0728003, SIAM J. Numer. Anal. 28 (1991), 43-77. (1991) Zbl0732.65093MR1083324DOI10.1137/0728003
  10. Hoppe, R. H. W., Iliash, Y., Iyyunni, C., Sweilam, N. H., 10.1163/156939506776382139, J. Numer. Math. 14 (2006), 57-82. (2006) Zbl1104.65066MR2229819DOI10.1163/156939506776382139
  11. Hou, L. S., Turner, J. C., 10.1007/s002110050146, Numer. Math. 71 (1995), 289-315. (1995) Zbl0827.49002MR1347571DOI10.1007/s002110050146
  12. Knowles, G., 10.1137/0320032, SIAM J. Control Optimization 20 (1982), 414-427. (1982) Zbl0481.49026MR0652217DOI10.1137/0320032
  13. Li, R., Liu, W., Ma, H., Tang, T., 10.1137/S0363012901389342, SIAM J. Control Optimization 41 (2002), 1321-1349. (2002) Zbl1034.49031MR1971952DOI10.1137/S0363012901389342
  14. Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Die Grundlehren der mathematischen Wissenschaften 170 Springer, Berlin (1971). (1971) Zbl0203.09001MR0271512
  15. Liu, W., Ma, H., Tang, T., Yan, N., 10.1137/S0036142902397090, SIAM J. Numer. Anal. 42 (2004), 1032-1061. (2004) Zbl1085.65054MR2113674DOI10.1137/S0036142902397090
  16. Liu, W., Yan, N., 10.1137/S0036142999352187, SIAM J. Numer. Anal. 39 (2001), 73-99. (2001) Zbl0988.49018MR1860717DOI10.1137/S0036142999352187
  17. Liu, W., Yan, N., 10.1023/A:1014239012739, Adv. Comput. Math. 15 (2001), 285-309. (2001) Zbl1008.49024MR1887737DOI10.1023/A:1014239012739
  18. Liu, W., Yan, N., 10.1137/S0036142901384009, SIAM J. Numer. Anal. 40 (2002), 1850-1869. (2002) Zbl1028.49025MR1950625DOI10.1137/S0036142901384009
  19. Liu, W., Yan, N., 10.1007/s002110100380, Numer. Math. 93 (2003), 497-521. (2003) Zbl1049.65057MR1953750DOI10.1007/s002110100380
  20. Lu, Z., Chen, Y., A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems, Adv. Appl. Math. Mech. 1 (2009), 242-256. (2009) Zbl1262.49009MR2520864
  21. R. S. McKnight, W. E. Bosarge, Jr., 10.1137/0311040, SIAM J. Control Optim. 11 (1973), 510-524. (1973) Zbl0237.65071MR0403754DOI10.1137/0311040
  22. Milner, F. A., 10.1090/S0025-5718-1985-0777266-1, Math. Comput. 44 (1985), 303-320. (1985) Zbl0567.65079MR0777266DOI10.1090/S0025-5718-1985-0777266-1
  23. Scott, L. R., Zhang, S., 10.1090/S0025-5718-1990-1011446-7, Math. Comput. 54 (1990), 483-493. (1990) Zbl0696.65007MR1011446DOI10.1090/S0025-5718-1990-1011446-7
  24. Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics 25 Springer, Berlin (1997). (1997) Zbl0884.65097MR1479170
  25. Tiba, D., Lectures on the Optimal Control of Elliptic Problems, University of Jyvaskyla Press, Jyvaskyla, Finland (1995). (1995) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.