Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems

Kobra Rabiei; Yadollah Ordokhani

Applications of Mathematics (2018)

  • Volume: 63, Issue: 5, page 541-567
  • ISSN: 0862-7940

Abstract

top
A new hybrid of block-pulse functions and Boubaker polynomials is constructed to solve the inequality constrained fractional optimal control problems (FOCPs) with quadratic performance index and fractional variational problems (FVPs). First, the general formulation of the Riemann-Liouville integral operator for Boubaker hybrid function is presented for the first time. Then it is applied to reduce the problems to optimization problems, which can be solved by the existing method. In this way we find the extremum value of FOCPs without adding slack variables to inequality trajectories. Also we show that if the number of bases is increased, the used approximations in this method are convergent. The applicability and validity of the method are shown by numerical results of some examples, moreover, a comparison with the existing results shows the preference of this method.

How to cite

top

Rabiei, Kobra, and Ordokhani, Yadollah. "Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems." Applications of Mathematics 63.5 (2018): 541-567. <http://eudml.org/doc/294816>.

@article{Rabiei2018,
abstract = {A new hybrid of block-pulse functions and Boubaker polynomials is constructed to solve the inequality constrained fractional optimal control problems (FOCPs) with quadratic performance index and fractional variational problems (FVPs). First, the general formulation of the Riemann-Liouville integral operator for Boubaker hybrid function is presented for the first time. Then it is applied to reduce the problems to optimization problems, which can be solved by the existing method. In this way we find the extremum value of FOCPs without adding slack variables to inequality trajectories. Also we show that if the number of bases is increased, the used approximations in this method are convergent. The applicability and validity of the method are shown by numerical results of some examples, moreover, a comparison with the existing results shows the preference of this method.},
author = {Rabiei, Kobra, Ordokhani, Yadollah},
journal = {Applications of Mathematics},
keywords = {fractional optimal control problems; fractional variational problems; Riemann-Liouville fractional integration; hybrid functions; Boubaker polynomials; Laplace transform; convergence analysis},
language = {eng},
number = {5},
pages = {541-567},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems},
url = {http://eudml.org/doc/294816},
volume = {63},
year = {2018},
}

TY - JOUR
AU - Rabiei, Kobra
AU - Ordokhani, Yadollah
TI - Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 5
SP - 541
EP - 567
AB - A new hybrid of block-pulse functions and Boubaker polynomials is constructed to solve the inequality constrained fractional optimal control problems (FOCPs) with quadratic performance index and fractional variational problems (FVPs). First, the general formulation of the Riemann-Liouville integral operator for Boubaker hybrid function is presented for the first time. Then it is applied to reduce the problems to optimization problems, which can be solved by the existing method. In this way we find the extremum value of FOCPs without adding slack variables to inequality trajectories. Also we show that if the number of bases is increased, the used approximations in this method are convergent. The applicability and validity of the method are shown by numerical results of some examples, moreover, a comparison with the existing results shows the preference of this method.
LA - eng
KW - fractional optimal control problems; fractional variational problems; Riemann-Liouville fractional integration; hybrid functions; Boubaker polynomials; Laplace transform; convergence analysis
UR - http://eudml.org/doc/294816
ER -

References

top
  1. Agrawal, O. P., 10.1016/S0022-247X(02)00180-4, J. Math. Anal. Appl. 272 (2002), 368-379. (2002) Zbl1070.49013MR1930721DOI10.1016/S0022-247X(02)00180-4
  2. Agrawal, O. P., 10.1007/s11071-004-3764-6, Nonlinear Dyn. 38 (2004), 323-337. (2004) Zbl1121.70019MR2112177DOI10.1007/s11071-004-3764-6
  3. Agrawal, O. P., 10.1115/1.2814055, J. Dyn. Syst. Meas. Control 130 (2007), 011010, 6 pages. (2007) MR2463065DOI10.1115/1.2814055
  4. Agrawal, O. P., 10.1016/j.jmaa.2007.03.105, J. Math. Anal. Appl. 337 (2008), 1-12. (2008) Zbl1123.65059MR2356049DOI10.1016/j.jmaa.2007.03.105
  5. Agrawal, O. P., 10.1115/1.2833873, J. Comput. Nonlinear Dyn. 3 (2008), 021204, 6 pages. (2008) MR2466118DOI10.1115/1.2833873
  6. Agrawal, O. P., Baleanu, D., 10.1177/1077546307077467, J. Vib. Control 13 (2007), 1269-1281. (2007) Zbl1182.70047MR2356715DOI10.1177/1077546307077467
  7. Alipour, M., Rostamy, D., Baleanu, D., 10.1177/1077546312458308, J. Vib. Control 19 (2013), 2523-2540. (2013) Zbl1358.93097MR3179222DOI10.1177/1077546312458308
  8. Almeida, R., Torres, D. F. M., 10.1007/s11071-014-1378-1, Nonlinear Dyn. 80 (2015), 1811-1816. (2015) Zbl1345.49022MR3343434DOI10.1007/s11071-014-1378-1
  9. Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M., 10.1016/j.sigpro.2010.05.001, Signal Process. 91 (2011), 513-524. (2011) Zbl1203.94022DOI10.1016/j.sigpro.2010.05.001
  10. Bhrawy, A. H., Ezz-Eldien, S. S., 10.1007/s10092-015-0160-1, Calcolo 53 (2016), 521-543. (2016) Zbl1377.49032MR3574601DOI10.1007/s10092-015-0160-1
  11. Bryson, A. E., Ho, Y. C., Applied Optimal Control. Optimization, Estimation, and Control, Hemisphere, Washington (1975). (1975) MR0446628
  12. Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., 10.1007/978-3-540-30726-6, Scientific Computation, Springer, Berlin (2006). (2006) Zbl1093.76002MR2223552DOI10.1007/978-3-540-30726-6
  13. Darby, C. L., Hager, W. W., Rao, A. V., 10.1002/oca.957, Optim. Control Appl. Methods 32 (2011), 476-502. (2011) Zbl1266.49066MR2850736DOI10.1002/oca.957
  14. Dreyfus, S. F., 10.1016/0022-247X(62)90056-2, J. Math. Anal. Appl. 4 (1962), 297-308. (1962) Zbl0119.16005MR0141561DOI10.1016/0022-247X(62)90056-2
  15. El-Kady, M., 10.1080/0020716031000070625, Int. J. Comput. Math. 80 (2003), 883-895. (2003) Zbl1037.65065MR1984992DOI10.1080/0020716031000070625
  16. Elnagar, G. N., Kazemi, M. A., 10.1023/A:1018694111831, Comput. Optim. Appl. 11 (1998), 195-217. (1998) Zbl0914.93024MR1652069DOI10.1023/A:1018694111831
  17. Elnagar, G., Kazemi, M. A., Razzaghi, M., 10.1109/9.467672, IEEE Trans. Autom. Control 40 (1995), 1793-1796. (1995) Zbl0863.49016MR1354521DOI10.1109/9.467672
  18. Ezz-Eldien, S. S., 10.1016/j.jcp.2016.04.045, J. Comput. Phys. 317 (2016), 362-381. (2016) Zbl1349.65250MR3498819DOI10.1016/j.jcp.2016.04.045
  19. Fahroo, F., Roos, I. M., 10.2514/2.4862, J. Guid Control Dyn. 25 (2002), 160-166. (2002) DOI10.2514/2.4862
  20. Foroozandeh, Z., Shamsi, M., 10.1016/j.actaastro.2011.10.004, Acta Astronautica 72 (2012), 21-26. (2012) DOI10.1016/j.actaastro.2011.10.004
  21. Gong, Q., Kang, W., Ross, I. M., 10.1109/TAC.2006.878570, IEEE Trans. Autom. Control 51 (2006), 1115-1129. (2006) Zbl1366.49035MR2238794DOI10.1109/TAC.2006.878570
  22. Holsapple, R., Venkataraman, R., Doman, D., 10.1109/AERO.2003.1235204, IEEE Aerospace Conf. Proc. 6 (2003), 2783-2790. (2003) DOI10.1109/AERO.2003.1235204
  23. Jesus, I. S., Machado, J. A. Tenreiro, 10.1007/s11071-007-9322-2, Nonlinear Dyn. 54 (2008), 263-282. (2008) Zbl1210.80008MR2442944DOI10.1007/s11071-007-9322-2
  24. Jiang, C., Lin, Q., Yu, C., Teo, K. L., Duan, G.-R., 10.1007/s10957-012-0006-9, J. Optim. Theory Appl. 154 (2012), 30-53. (2012) Zbl1264.49036MR2931365DOI10.1007/s10957-012-0006-9
  25. Kafash, B., Delavarkhalafi, A., Karbassi, S. M., Boubaker, K., 10.5899/2014/jiasc-00033, J. Interpolat. Approx. Sci. Comput. 2014 (2014), Article ID 00033, 18 pages. (2014) MR3200248DOI10.5899/2014/jiasc-00033
  26. Keshavarz, E., Ordokhani, Y., Razzaghi, Y., 10.1177/1077546314567181, J. Vib. Control 22 (2016), 3889-3903. (2016) Zbl1373.49003MR3546331DOI10.1177/1077546314567181
  27. Khader, M. M., 10.1016/j.apm.2014.09.012, Appl. Math. Model. 39 (2015), 1643-1649. (2015) MR3320820DOI10.1016/j.apm.2014.09.012
  28. Khader, M. M., Hendy, A. S., 10.1002/mma.2681, Math. Methods Appl. Sci. 36 (2013), 1281-1289. (2013) Zbl1281.65094MR3072360DOI10.1002/mma.2681
  29. Khalid, A., Huey, J., Singhose, W., Lawrence, J., Frakes, D., 10.1115/1.2361321, J. Dyn. Syst. Meas. Control 128 (2006), 835-841. (2006) DOI10.1115/1.2361321
  30. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204, Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
  31. Kirk, D. E., Optimal Control Theory: An Introduction, Dover Publication, New York (2004). (2004) 
  32. Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley & Sons, New York (1978). (1978) Zbl0368.46014MR0467220
  33. Lancaster, P., Theory of Matrices, Academic Press, New York (1969). (1969) Zbl0186.05301MR0245579
  34. Li, M., Peng, H., 10.1016/j.isatra.2016.02.007, ISA Trans. 62 (2016), 177-192. (2016) DOI10.1016/j.isatra.2016.02.007
  35. Lotfi, A., Yousefi, S. A., Dehghan, M., 10.1016/j.cam.2013.03.003, J. Comput. Appl. Math. 250 (2013), 143-160. (2013) Zbl1286.49030MR3044581DOI10.1016/j.cam.2013.03.003
  36. Lu, Z., 10.1007/s10492-016-0126-x, Appl. Math., Praha 61 (2016), 135-163. (2016) Zbl1389.49018MR3470771DOI10.1007/s10492-016-0126-x
  37. Malinowska, A. B., Torres, D. F. M., 10.1016/j.camwa.2010.02.032, Comput. Math. Appl. 59 (2010), 3110-3116. (2010) Zbl1193.49023MR2610543DOI10.1016/j.camwa.2010.02.032
  38. Marzban, H. R., Hoseini, S. M., 10.1016/j.cnsns.2012.10.012, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1347-1361. (2013) Zbl1282.65075MR3016889DOI10.1016/j.cnsns.2012.10.012
  39. Marzban, H. R., Razzaghi, M., 10.1016/S0307-904X(03)00050-7, Appl. Math. Modelling 27 (2003), 471-485. (2003) Zbl1020.49025DOI10.1016/S0307-904X(03)00050-7
  40. Marzban, H. R., Tabrizidooz, H. R., Razzaghi, M., 10.1016/j.cnsns.2010.06.013, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1186-1194. (2011) Zbl1221.65340MR2736626DOI10.1016/j.cnsns.2010.06.013
  41. Mashayekhi, S., Razzaghi, M., 10.1177/1077546316665956, J. Vib. Control 24 (2018), 1621-1631. (2018) MR3785609DOI10.1177/1077546316665956
  42. Mehra, R. K., Davis, R. E., 10.1109/TAC.1972.1099881, IEEE Trans. Autom. Control 17 (1972), 69-79. (1972) Zbl0268.49038DOI10.1109/TAC.1972.1099881
  43. Motta, M., Sartori, C., 10.1007/s00030-014-0274-1, NoDEA, Nonlinear Differ. Equ. Appl. 22 (2015), 21-44. (2015) Zbl1311.49006MR3311892DOI10.1007/s00030-014-0274-1
  44. Muslih, S. I., Baleanu, D., 10.1007/s10582-005-0067-1, Czech J. Phys. 55 (2005), 633-642. (2005) Zbl1181.70017MR216935DOI10.1007/s10582-005-0067-1
  45. Nemati, A., Yousefi, S., Soltanian, F., Ardabili, J. S., 10.1002/asjc.1321, Asian J. Control 18 (2016), 2272-2282. (2016) Zbl1359.65100MR3580387DOI10.1002/asjc.1321
  46. Ordokhani, Y., Rahimkhani, P., 10.1007/s12190-017-1134-z, J. Appl. Math. Comput. 58 (2018), 75-94. (2018) Zbl06943475MR3847032DOI10.1007/s12190-017-1134-z
  47. Ordokhani, Y., Razzaghi, M., Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 12 (2005), 761-773. (2005) Zbl1081.49026MR2179602
  48. Park, C., Scheeres, D. J., 10.1016/j.automatica.2006.01.015, Automatica 42 (2006), 869-875. (2006) Zbl1137.49020MR2207828DOI10.1016/j.automatica.2006.01.015
  49. Pu, Y.-F., Siarry, P., Zhou, J.-L., Zhang, N., 10.1002/mma.2935, Math. Methods Appl. Sci. 37 (2014), 1784-1806. (2014) Zbl1301.35203MR3231073DOI10.1002/mma.2935
  50. Rabiei, K., Ordokhani, Y., Babolian, E., 10.1007/s11071-016-3291-2, Nonlinear Dyn. 88 (2017), 1013-1026. (2017) Zbl1380.49058MR3628368DOI10.1007/s11071-016-3291-2
  51. Rabiei, K., Ordokhani, Y., Babolian, E., 10.1177/1077546317705041, J. Vib. Control 24 (2018), 3370-3383. (2018) MR3841934DOI10.1177/1077546317705041
  52. Razzaghi, M., Yousefi, S., 10.1016/S0378-4754(00)00170-1, Math. Comput. Simul. 53 (2000), 185-192. (2000) MR1784947DOI10.1016/S0378-4754(00)00170-1
  53. Riewe, F., 10.1103/PhysRevE.53.1890, Phys. Rev. E. 53 (1996), 1890-1899. (1996) MR1401316DOI10.1103/PhysRevE.53.1890
  54. Riewe, F., 10.1103/PhysRevE.55.3581, Phys. Rev. E. 55 (1997), 3581-3592. (1997) MR1438729DOI10.1103/PhysRevE.55.3581
  55. Schiff, J. L., 10.1007/978-0-387-22757-3, Undergraduate Texts in Mathematics, Springer, New York (1999). (1999) Zbl0934.44001MR1716143DOI10.1007/978-0-387-22757-3
  56. Schittkowski, K., 10.1007/BF02739235, Ann. Oper. Res. 5 (1986), 485-500. (1986) MR0948031DOI10.1007/BF02739235
  57. Suárez, I. J., Vinagre, B. M., Chen, Y. Q., 10.1177/1077546307087434, J. Vib. Control 14 (2008), 1499-1511. (2008) Zbl1229.70086MR2463075DOI10.1177/1077546307087434
  58. Tohidi, E., Nik, H. Saberi, 10.1016/j.apm.2014.06.003, Appl. Math. Model. 39 (2015), 455-465. (2015) MR3282588DOI10.1016/j.apm.2014.06.003
  59. Tricaud, C., Chen, Y., 10.1016/j.camwa.2009.08.006, Comput. Math. Appl. 59 (2010), 1644-1655. (2010) Zbl1189.49045MR2595937DOI10.1016/j.camwa.2009.08.006
  60. Tuan, L. A., Lee, S. G., 10.1007/s12206-013-0437-8, J. Mech. Sci. Technol. 27 (2013), 1863-1873. (2013) DOI10.1007/s12206-013-0437-8
  61. Vlassenbroeck, J., 10.1016/0005-1098(88)90094-5, Automatica 24 (1988), 499-506. (1988) Zbl0647.49023MR0956571DOI10.1016/0005-1098(88)90094-5
  62. Wang, X., Peng, H., Zhang, S., Chen, B., Zhong, W., 10.1016/j.isatra.2017.02.018, ISA Trans. 68 (2017), 335-352. (2017) MR3534963DOI10.1016/j.isatra.2017.02.018
  63. Wang, D., Xiao, A., 10.1016/j.cnsns.2011.06.028, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 602-610. (2012) Zbl1239.49028MR2834419DOI10.1016/j.cnsns.2011.06.028
  64. Yan, N., 10.1007/s10492-009-0017-5, Appl. Math., Praha 54 (2003), 267-283. (2003) Zbl1212.65256MR2530543DOI10.1007/s10492-009-0017-5
  65. Yonthanthum, W., Rattana, A., Razzaghi, M., 10.1002/oca.2383, Optim. Control Appl. Methods 39 (2018), 873-887. (2018) Zbl06909040MR3796971DOI10.1002/oca.2383
  66. Yousefi, S. A., Dehghan, M., Lotfi, A., 10.1016/j.camwa.2011.03.064, Comput. Math. Appl. 62 (2011), 987-995. (2011) Zbl1228.49016MR2824686DOI10.1016/j.camwa.2011.03.064
  67. Yousefi, S. A., Lotfi, A., Dehghan, M., 10.1177/1077546311399950, J. Vib. Control 17 (2011), 2059-2065. (2011) Zbl1271.65105MR2895863DOI10.1177/1077546311399950
  68. Zaky, M. A., 10.1007/s11071-017-4038-4, Nonlinear Dyn. 91 (2018), 2667-2681. (2018) Zbl1392.35331DOI10.1007/s11071-017-4038-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.