Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems
Kobra Rabiei; Yadollah Ordokhani
Applications of Mathematics (2018)
- Volume: 63, Issue: 5, page 541-567
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRabiei, Kobra, and Ordokhani, Yadollah. "Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems." Applications of Mathematics 63.5 (2018): 541-567. <http://eudml.org/doc/294816>.
@article{Rabiei2018,
abstract = {A new hybrid of block-pulse functions and Boubaker polynomials is constructed to solve the inequality constrained fractional optimal control problems (FOCPs) with quadratic performance index and fractional variational problems (FVPs). First, the general formulation of the Riemann-Liouville integral operator for Boubaker hybrid function is presented for the first time. Then it is applied to reduce the problems to optimization problems, which can be solved by the existing method. In this way we find the extremum value of FOCPs without adding slack variables to inequality trajectories. Also we show that if the number of bases is increased, the used approximations in this method are convergent. The applicability and validity of the method are shown by numerical results of some examples, moreover, a comparison with the existing results shows the preference of this method.},
author = {Rabiei, Kobra, Ordokhani, Yadollah},
journal = {Applications of Mathematics},
keywords = {fractional optimal control problems; fractional variational problems; Riemann-Liouville fractional integration; hybrid functions; Boubaker polynomials; Laplace transform; convergence analysis},
language = {eng},
number = {5},
pages = {541-567},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems},
url = {http://eudml.org/doc/294816},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Rabiei, Kobra
AU - Ordokhani, Yadollah
TI - Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 5
SP - 541
EP - 567
AB - A new hybrid of block-pulse functions and Boubaker polynomials is constructed to solve the inequality constrained fractional optimal control problems (FOCPs) with quadratic performance index and fractional variational problems (FVPs). First, the general formulation of the Riemann-Liouville integral operator for Boubaker hybrid function is presented for the first time. Then it is applied to reduce the problems to optimization problems, which can be solved by the existing method. In this way we find the extremum value of FOCPs without adding slack variables to inequality trajectories. Also we show that if the number of bases is increased, the used approximations in this method are convergent. The applicability and validity of the method are shown by numerical results of some examples, moreover, a comparison with the existing results shows the preference of this method.
LA - eng
KW - fractional optimal control problems; fractional variational problems; Riemann-Liouville fractional integration; hybrid functions; Boubaker polynomials; Laplace transform; convergence analysis
UR - http://eudml.org/doc/294816
ER -
References
top- Agrawal, O. P., 10.1016/S0022-247X(02)00180-4, J. Math. Anal. Appl. 272 (2002), 368-379. (2002) Zbl1070.49013MR1930721DOI10.1016/S0022-247X(02)00180-4
- Agrawal, O. P., 10.1007/s11071-004-3764-6, Nonlinear Dyn. 38 (2004), 323-337. (2004) Zbl1121.70019MR2112177DOI10.1007/s11071-004-3764-6
- Agrawal, O. P., 10.1115/1.2814055, J. Dyn. Syst. Meas. Control 130 (2007), 011010, 6 pages. (2007) MR2463065DOI10.1115/1.2814055
- Agrawal, O. P., 10.1016/j.jmaa.2007.03.105, J. Math. Anal. Appl. 337 (2008), 1-12. (2008) Zbl1123.65059MR2356049DOI10.1016/j.jmaa.2007.03.105
- Agrawal, O. P., 10.1115/1.2833873, J. Comput. Nonlinear Dyn. 3 (2008), 021204, 6 pages. (2008) MR2466118DOI10.1115/1.2833873
- Agrawal, O. P., Baleanu, D., 10.1177/1077546307077467, J. Vib. Control 13 (2007), 1269-1281. (2007) Zbl1182.70047MR2356715DOI10.1177/1077546307077467
- Alipour, M., Rostamy, D., Baleanu, D., 10.1177/1077546312458308, J. Vib. Control 19 (2013), 2523-2540. (2013) Zbl1358.93097MR3179222DOI10.1177/1077546312458308
- Almeida, R., Torres, D. F. M., 10.1007/s11071-014-1378-1, Nonlinear Dyn. 80 (2015), 1811-1816. (2015) Zbl1345.49022MR3343434DOI10.1007/s11071-014-1378-1
- Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M., 10.1016/j.sigpro.2010.05.001, Signal Process. 91 (2011), 513-524. (2011) Zbl1203.94022DOI10.1016/j.sigpro.2010.05.001
- Bhrawy, A. H., Ezz-Eldien, S. S., 10.1007/s10092-015-0160-1, Calcolo 53 (2016), 521-543. (2016) Zbl1377.49032MR3574601DOI10.1007/s10092-015-0160-1
- Bryson, A. E., Ho, Y. C., Applied Optimal Control. Optimization, Estimation, and Control, Hemisphere, Washington (1975). (1975) MR0446628
- Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., 10.1007/978-3-540-30726-6, Scientific Computation, Springer, Berlin (2006). (2006) Zbl1093.76002MR2223552DOI10.1007/978-3-540-30726-6
- Darby, C. L., Hager, W. W., Rao, A. V., 10.1002/oca.957, Optim. Control Appl. Methods 32 (2011), 476-502. (2011) Zbl1266.49066MR2850736DOI10.1002/oca.957
- Dreyfus, S. F., 10.1016/0022-247X(62)90056-2, J. Math. Anal. Appl. 4 (1962), 297-308. (1962) Zbl0119.16005MR0141561DOI10.1016/0022-247X(62)90056-2
- El-Kady, M., 10.1080/0020716031000070625, Int. J. Comput. Math. 80 (2003), 883-895. (2003) Zbl1037.65065MR1984992DOI10.1080/0020716031000070625
- Elnagar, G. N., Kazemi, M. A., 10.1023/A:1018694111831, Comput. Optim. Appl. 11 (1998), 195-217. (1998) Zbl0914.93024MR1652069DOI10.1023/A:1018694111831
- Elnagar, G., Kazemi, M. A., Razzaghi, M., 10.1109/9.467672, IEEE Trans. Autom. Control 40 (1995), 1793-1796. (1995) Zbl0863.49016MR1354521DOI10.1109/9.467672
- Ezz-Eldien, S. S., 10.1016/j.jcp.2016.04.045, J. Comput. Phys. 317 (2016), 362-381. (2016) Zbl1349.65250MR3498819DOI10.1016/j.jcp.2016.04.045
- Fahroo, F., Roos, I. M., 10.2514/2.4862, J. Guid Control Dyn. 25 (2002), 160-166. (2002) DOI10.2514/2.4862
- Foroozandeh, Z., Shamsi, M., 10.1016/j.actaastro.2011.10.004, Acta Astronautica 72 (2012), 21-26. (2012) DOI10.1016/j.actaastro.2011.10.004
- Gong, Q., Kang, W., Ross, I. M., 10.1109/TAC.2006.878570, IEEE Trans. Autom. Control 51 (2006), 1115-1129. (2006) Zbl1366.49035MR2238794DOI10.1109/TAC.2006.878570
- Holsapple, R., Venkataraman, R., Doman, D., 10.1109/AERO.2003.1235204, IEEE Aerospace Conf. Proc. 6 (2003), 2783-2790. (2003) DOI10.1109/AERO.2003.1235204
- Jesus, I. S., Machado, J. A. Tenreiro, 10.1007/s11071-007-9322-2, Nonlinear Dyn. 54 (2008), 263-282. (2008) Zbl1210.80008MR2442944DOI10.1007/s11071-007-9322-2
- Jiang, C., Lin, Q., Yu, C., Teo, K. L., Duan, G.-R., 10.1007/s10957-012-0006-9, J. Optim. Theory Appl. 154 (2012), 30-53. (2012) Zbl1264.49036MR2931365DOI10.1007/s10957-012-0006-9
- Kafash, B., Delavarkhalafi, A., Karbassi, S. M., Boubaker, K., 10.5899/2014/jiasc-00033, J. Interpolat. Approx. Sci. Comput. 2014 (2014), Article ID 00033, 18 pages. (2014) MR3200248DOI10.5899/2014/jiasc-00033
- Keshavarz, E., Ordokhani, Y., Razzaghi, Y., 10.1177/1077546314567181, J. Vib. Control 22 (2016), 3889-3903. (2016) Zbl1373.49003MR3546331DOI10.1177/1077546314567181
- Khader, M. M., 10.1016/j.apm.2014.09.012, Appl. Math. Model. 39 (2015), 1643-1649. (2015) MR3320820DOI10.1016/j.apm.2014.09.012
- Khader, M. M., Hendy, A. S., 10.1002/mma.2681, Math. Methods Appl. Sci. 36 (2013), 1281-1289. (2013) Zbl1281.65094MR3072360DOI10.1002/mma.2681
- Khalid, A., Huey, J., Singhose, W., Lawrence, J., Frakes, D., 10.1115/1.2361321, J. Dyn. Syst. Meas. Control 128 (2006), 835-841. (2006) DOI10.1115/1.2361321
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204, Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
- Kirk, D. E., Optimal Control Theory: An Introduction, Dover Publication, New York (2004). (2004)
- Kreyszig, E., Introductory Functional Analysis with Applications, John Wiley & Sons, New York (1978). (1978) Zbl0368.46014MR0467220
- Lancaster, P., Theory of Matrices, Academic Press, New York (1969). (1969) Zbl0186.05301MR0245579
- Li, M., Peng, H., 10.1016/j.isatra.2016.02.007, ISA Trans. 62 (2016), 177-192. (2016) DOI10.1016/j.isatra.2016.02.007
- Lotfi, A., Yousefi, S. A., Dehghan, M., 10.1016/j.cam.2013.03.003, J. Comput. Appl. Math. 250 (2013), 143-160. (2013) Zbl1286.49030MR3044581DOI10.1016/j.cam.2013.03.003
- Lu, Z., 10.1007/s10492-016-0126-x, Appl. Math., Praha 61 (2016), 135-163. (2016) Zbl1389.49018MR3470771DOI10.1007/s10492-016-0126-x
- Malinowska, A. B., Torres, D. F. M., 10.1016/j.camwa.2010.02.032, Comput. Math. Appl. 59 (2010), 3110-3116. (2010) Zbl1193.49023MR2610543DOI10.1016/j.camwa.2010.02.032
- Marzban, H. R., Hoseini, S. M., 10.1016/j.cnsns.2012.10.012, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1347-1361. (2013) Zbl1282.65075MR3016889DOI10.1016/j.cnsns.2012.10.012
- Marzban, H. R., Razzaghi, M., 10.1016/S0307-904X(03)00050-7, Appl. Math. Modelling 27 (2003), 471-485. (2003) Zbl1020.49025DOI10.1016/S0307-904X(03)00050-7
- Marzban, H. R., Tabrizidooz, H. R., Razzaghi, M., 10.1016/j.cnsns.2010.06.013, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1186-1194. (2011) Zbl1221.65340MR2736626DOI10.1016/j.cnsns.2010.06.013
- Mashayekhi, S., Razzaghi, M., 10.1177/1077546316665956, J. Vib. Control 24 (2018), 1621-1631. (2018) MR3785609DOI10.1177/1077546316665956
- Mehra, R. K., Davis, R. E., 10.1109/TAC.1972.1099881, IEEE Trans. Autom. Control 17 (1972), 69-79. (1972) Zbl0268.49038DOI10.1109/TAC.1972.1099881
- Motta, M., Sartori, C., 10.1007/s00030-014-0274-1, NoDEA, Nonlinear Differ. Equ. Appl. 22 (2015), 21-44. (2015) Zbl1311.49006MR3311892DOI10.1007/s00030-014-0274-1
- Muslih, S. I., Baleanu, D., 10.1007/s10582-005-0067-1, Czech J. Phys. 55 (2005), 633-642. (2005) Zbl1181.70017MR216935DOI10.1007/s10582-005-0067-1
- Nemati, A., Yousefi, S., Soltanian, F., Ardabili, J. S., 10.1002/asjc.1321, Asian J. Control 18 (2016), 2272-2282. (2016) Zbl1359.65100MR3580387DOI10.1002/asjc.1321
- Ordokhani, Y., Rahimkhani, P., 10.1007/s12190-017-1134-z, J. Appl. Math. Comput. 58 (2018), 75-94. (2018) Zbl06943475MR3847032DOI10.1007/s12190-017-1134-z
- Ordokhani, Y., Razzaghi, M., Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 12 (2005), 761-773. (2005) Zbl1081.49026MR2179602
- Park, C., Scheeres, D. J., 10.1016/j.automatica.2006.01.015, Automatica 42 (2006), 869-875. (2006) Zbl1137.49020MR2207828DOI10.1016/j.automatica.2006.01.015
- Pu, Y.-F., Siarry, P., Zhou, J.-L., Zhang, N., 10.1002/mma.2935, Math. Methods Appl. Sci. 37 (2014), 1784-1806. (2014) Zbl1301.35203MR3231073DOI10.1002/mma.2935
- Rabiei, K., Ordokhani, Y., Babolian, E., 10.1007/s11071-016-3291-2, Nonlinear Dyn. 88 (2017), 1013-1026. (2017) Zbl1380.49058MR3628368DOI10.1007/s11071-016-3291-2
- Rabiei, K., Ordokhani, Y., Babolian, E., 10.1177/1077546317705041, J. Vib. Control 24 (2018), 3370-3383. (2018) MR3841934DOI10.1177/1077546317705041
- Razzaghi, M., Yousefi, S., 10.1016/S0378-4754(00)00170-1, Math. Comput. Simul. 53 (2000), 185-192. (2000) MR1784947DOI10.1016/S0378-4754(00)00170-1
- Riewe, F., 10.1103/PhysRevE.53.1890, Phys. Rev. E. 53 (1996), 1890-1899. (1996) MR1401316DOI10.1103/PhysRevE.53.1890
- Riewe, F., 10.1103/PhysRevE.55.3581, Phys. Rev. E. 55 (1997), 3581-3592. (1997) MR1438729DOI10.1103/PhysRevE.55.3581
- Schiff, J. L., 10.1007/978-0-387-22757-3, Undergraduate Texts in Mathematics, Springer, New York (1999). (1999) Zbl0934.44001MR1716143DOI10.1007/978-0-387-22757-3
- Schittkowski, K., 10.1007/BF02739235, Ann. Oper. Res. 5 (1986), 485-500. (1986) MR0948031DOI10.1007/BF02739235
- Suárez, I. J., Vinagre, B. M., Chen, Y. Q., 10.1177/1077546307087434, J. Vib. Control 14 (2008), 1499-1511. (2008) Zbl1229.70086MR2463075DOI10.1177/1077546307087434
- Tohidi, E., Nik, H. Saberi, 10.1016/j.apm.2014.06.003, Appl. Math. Model. 39 (2015), 455-465. (2015) MR3282588DOI10.1016/j.apm.2014.06.003
- Tricaud, C., Chen, Y., 10.1016/j.camwa.2009.08.006, Comput. Math. Appl. 59 (2010), 1644-1655. (2010) Zbl1189.49045MR2595937DOI10.1016/j.camwa.2009.08.006
- Tuan, L. A., Lee, S. G., 10.1007/s12206-013-0437-8, J. Mech. Sci. Technol. 27 (2013), 1863-1873. (2013) DOI10.1007/s12206-013-0437-8
- Vlassenbroeck, J., 10.1016/0005-1098(88)90094-5, Automatica 24 (1988), 499-506. (1988) Zbl0647.49023MR0956571DOI10.1016/0005-1098(88)90094-5
- Wang, X., Peng, H., Zhang, S., Chen, B., Zhong, W., 10.1016/j.isatra.2017.02.018, ISA Trans. 68 (2017), 335-352. (2017) MR3534963DOI10.1016/j.isatra.2017.02.018
- Wang, D., Xiao, A., 10.1016/j.cnsns.2011.06.028, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 602-610. (2012) Zbl1239.49028MR2834419DOI10.1016/j.cnsns.2011.06.028
- Yan, N., 10.1007/s10492-009-0017-5, Appl. Math., Praha 54 (2003), 267-283. (2003) Zbl1212.65256MR2530543DOI10.1007/s10492-009-0017-5
- Yonthanthum, W., Rattana, A., Razzaghi, M., 10.1002/oca.2383, Optim. Control Appl. Methods 39 (2018), 873-887. (2018) Zbl06909040MR3796971DOI10.1002/oca.2383
- Yousefi, S. A., Dehghan, M., Lotfi, A., 10.1016/j.camwa.2011.03.064, Comput. Math. Appl. 62 (2011), 987-995. (2011) Zbl1228.49016MR2824686DOI10.1016/j.camwa.2011.03.064
- Yousefi, S. A., Lotfi, A., Dehghan, M., 10.1177/1077546311399950, J. Vib. Control 17 (2011), 2059-2065. (2011) Zbl1271.65105MR2895863DOI10.1177/1077546311399950
- Zaky, M. A., 10.1007/s11071-017-4038-4, Nonlinear Dyn. 91 (2018), 2667-2681. (2018) Zbl1392.35331DOI10.1007/s11071-017-4038-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.