Some dimensional results for a class of special homogeneous Moran sets

Xiaomei Hu

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 127-135
  • ISSN: 0011-4642

Abstract

top
We construct a class of special homogeneous Moran sets, called { m k } -quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of { m k } k 1 , we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.

How to cite

top

Hu, Xiaomei. "Some dimensional results for a class of special homogeneous Moran sets." Czechoslovak Mathematical Journal 66.1 (2016): 127-135. <http://eudml.org/doc/276764>.

@article{Hu2016,
abstract = {We construct a class of special homogeneous Moran sets, called $\lbrace m_\{k\}\rbrace $-quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of $\lbrace m_\{k\}\rbrace _\{k\ge 1\}$, we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.},
author = {Hu, Xiaomei},
journal = {Czechoslovak Mathematical Journal},
keywords = {homogeneous Moran set; $\lbrace m_\{k\}\rbrace $-Moran set; $\lbrace m_\{k\}\rbrace $-quasi homogeneous Cantor set; Hausdorff dimension},
language = {eng},
number = {1},
pages = {127-135},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some dimensional results for a class of special homogeneous Moran sets},
url = {http://eudml.org/doc/276764},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Hu, Xiaomei
TI - Some dimensional results for a class of special homogeneous Moran sets
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 127
EP - 135
AB - We construct a class of special homogeneous Moran sets, called $\lbrace m_{k}\rbrace $-quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of $\lbrace m_{k}\rbrace _{k\ge 1}$, we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.
LA - eng
KW - homogeneous Moran set; $\lbrace m_{k}\rbrace $-Moran set; $\lbrace m_{k}\rbrace $-quasi homogeneous Cantor set; Hausdorff dimension
UR - http://eudml.org/doc/276764
ER -

References

top
  1. Falconer, K., Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester (1990). (1990) MR1102677
  2. Feng, D.-J., 10.1016/j.aim.2004.06.011, Adv. Math. 195 (2005), 24-101. (2005) Zbl1078.11062MR2145793DOI10.1016/j.aim.2004.06.011
  3. Feng, D., Wen, Z., Wu, J., 10.1007/BF02896955, Sci. China, Ser. A 40 (1997), 475-482. (1997) MR1461002DOI10.1007/BF02896955
  4. Li, J., Wu, M., 10.1007/s11425-011-4187-8, Sci. China, Math. 54 (2011), 699-710. (2011) Zbl1219.28010MR2786709DOI10.1007/s11425-011-4187-8
  5. Peng, F., Wen, S., 10.1007/s11425-010-4148-7, Sci. China, Math. 54 (2011), 75-81. (2011) Zbl1219.28001MR2764786DOI10.1007/s11425-010-4148-7
  6. Rao, H., Ruan, H.-J., Wang, Y., 10.1090/S0002-9947-2011-05327-4, Trans. Am. Math. Soc. 364 (2012), 1109-1126. (2012) Zbl1244.28015MR2869169DOI10.1090/S0002-9947-2011-05327-4
  7. Wang, B.-W., Wu, J., 10.1016/j.aim.2008.03.006, Adv. Math. 218 (2008), 1319-1339. (2008) Zbl1233.11084MR2419924DOI10.1016/j.aim.2008.03.006
  8. Wang, X. H., Wen, S. Y., 10.1007/s10474-011-0186-z, Acta Math. Hung. 134 (2012), 431-438. (2012) Zbl1265.28001MR2886217DOI10.1007/s10474-011-0186-z
  9. Wu, J., 10.1017/S0305004104008163, Math. Proc. Camb. Philos. Soc. 138 (2005), 9-20. (2005) Zbl1062.11054MR2127223DOI10.1017/S0305004104008163
  10. Wu, M., 10.1007/s00605-004-0254-3, Monatsh. Math. 144 (2005), 141-155. (2005) Zbl1061.28005MR2123961DOI10.1007/s00605-004-0254-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.