Some dimensional results for a class of special homogeneous Moran sets
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 127-135
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHu, Xiaomei. "Some dimensional results for a class of special homogeneous Moran sets." Czechoslovak Mathematical Journal 66.1 (2016): 127-135. <http://eudml.org/doc/276764>.
@article{Hu2016,
abstract = {We construct a class of special homogeneous Moran sets, called $\lbrace m_\{k\}\rbrace $-quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of $\lbrace m_\{k\}\rbrace _\{k\ge 1\}$, we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.},
author = {Hu, Xiaomei},
journal = {Czechoslovak Mathematical Journal},
keywords = {homogeneous Moran set; $\lbrace m_\{k\}\rbrace $-Moran set; $\lbrace m_\{k\}\rbrace $-quasi homogeneous Cantor set; Hausdorff dimension},
language = {eng},
number = {1},
pages = {127-135},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some dimensional results for a class of special homogeneous Moran sets},
url = {http://eudml.org/doc/276764},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Hu, Xiaomei
TI - Some dimensional results for a class of special homogeneous Moran sets
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 127
EP - 135
AB - We construct a class of special homogeneous Moran sets, called $\lbrace m_{k}\rbrace $-quasi homogeneous Cantor sets, and discuss their Hausdorff dimensions. By adjusting the value of $\lbrace m_{k}\rbrace _{k\ge 1}$, we constructively prove the intermediate value theorem for the homogeneous Moran set. Moreover, we obtain a sufficient condition for the Hausdorff dimension of homogeneous Moran sets to assume the minimum value, which expands earlier works.
LA - eng
KW - homogeneous Moran set; $\lbrace m_{k}\rbrace $-Moran set; $\lbrace m_{k}\rbrace $-quasi homogeneous Cantor set; Hausdorff dimension
UR - http://eudml.org/doc/276764
ER -
References
top- Falconer, K., Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester (1990). (1990) MR1102677
- Feng, D.-J., 10.1016/j.aim.2004.06.011, Adv. Math. 195 (2005), 24-101. (2005) Zbl1078.11062MR2145793DOI10.1016/j.aim.2004.06.011
- Feng, D., Wen, Z., Wu, J., 10.1007/BF02896955, Sci. China, Ser. A 40 (1997), 475-482. (1997) MR1461002DOI10.1007/BF02896955
- Li, J., Wu, M., 10.1007/s11425-011-4187-8, Sci. China, Math. 54 (2011), 699-710. (2011) Zbl1219.28010MR2786709DOI10.1007/s11425-011-4187-8
- Peng, F., Wen, S., 10.1007/s11425-010-4148-7, Sci. China, Math. 54 (2011), 75-81. (2011) Zbl1219.28001MR2764786DOI10.1007/s11425-010-4148-7
- Rao, H., Ruan, H.-J., Wang, Y., 10.1090/S0002-9947-2011-05327-4, Trans. Am. Math. Soc. 364 (2012), 1109-1126. (2012) Zbl1244.28015MR2869169DOI10.1090/S0002-9947-2011-05327-4
- Wang, B.-W., Wu, J., 10.1016/j.aim.2008.03.006, Adv. Math. 218 (2008), 1319-1339. (2008) Zbl1233.11084MR2419924DOI10.1016/j.aim.2008.03.006
- Wang, X. H., Wen, S. Y., 10.1007/s10474-011-0186-z, Acta Math. Hung. 134 (2012), 431-438. (2012) Zbl1265.28001MR2886217DOI10.1007/s10474-011-0186-z
- Wu, J., 10.1017/S0305004104008163, Math. Proc. Camb. Philos. Soc. 138 (2005), 9-20. (2005) Zbl1062.11054MR2127223DOI10.1017/S0305004104008163
- Wu, M., 10.1007/s00605-004-0254-3, Monatsh. Math. 144 (2005), 141-155. (2005) Zbl1061.28005MR2123961DOI10.1007/s00605-004-0254-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.