Displaying similar documents to “Some dimensional results for a class of special homogeneous Moran sets”

Representation and construction of homogeneous and quasi-homogeneous n -ary aggregation functions

Yong Su, Radko Mesiar (2021)

Kybernetika

Similarity:

Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous n -ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous n -ary aggregation functions by aggregation of given ones.

Positively homogeneous functions and the Łojasiewicz gradient inequality

Alain Haraux (2005)

Annales Polonici Mathematici

Similarity:

It is quite natural to conjecture that a positively homogeneous function with degree d ≥ 2 on N satisfies the Łojasiewicz gradient inequality with exponent θ = 1/d without any need for an analyticity assumption. We show that this property is true under some additional hypotheses, but not always, even for N = 2.

Besov spaces on spaces of homogeneous type and fractals

Dachun Yang (2003)

Studia Mathematica

Similarity:

Let Γ be a compact d-set in ℝⁿ with 0 < d ≤ n, which includes various kinds of fractals. The author shows that the Besov spaces B p q s ( Γ ) defined by two different and equivalent methods, namely, via traces and quarkonial decompositions in the sense of Triebel are the same spaces as those obtained by regarding Γ as a space of homogeneous type when 0 < s < 1, 1 < p < ∞ and 1 ≤ q ≤ ∞.

On the cardinality of power homogeneous Hausdorff spaces

G. J. Ridderbos (2006)

Fundamenta Mathematicae

Similarity:

We prove that the cardinality of power homogeneous Hausdorff spaces X is bounded by d ( X ) π χ ( X ) . This inequality improves many known results and it also solves a question by J. van Mill. We further introduce Δ-power homogeneity, which leads to a new proof of van Douwen’s theorem.

Naturally reductive homogeneous ( α , β ) -metric spaces

M. Parhizkar, H.R. Salimi Moghaddam (2021)

Archivum Mathematicum

Similarity:

In the present paper we study naturally reductive homogeneous ( α , β ) -metric spaces. We show that for homogeneous ( α , β ) -metric spaces, under a mild condition, the two definitions of naturally reductive homogeneous Finsler space, given in the literature, are equivalent. Then, we compute the flag curvature of naturally reductive homogeneous ( α , β ) -metric spaces.

Anisotropic classes of homogeneous pseudodifferential symbols

Árpád Bényi, Marcin Bownik (2010)

Studia Mathematica

Similarity:

We define homogeneous classes of x-dependent anisotropic symbols γ , δ m ( A ) in the framework determined by an expansive dilation A, thus extending the existing theory for diagonal dilations. We revisit anisotropic analogues of Hörmander-Mikhlin multipliers introduced by Rivière [Ark. Mat. 9 (1971)] and provide direct proofs of their boundedness on Lebesgue and Hardy spaces by making use of the well-established Calderón-Zygmund theory on spaces of homogeneous type. We then show that x-dependent...

Classifying homogeneous ultrametric spaces up to coarse equivalence

Taras Banakh, Dušan Repovš (2016)

Colloquium Mathematicae

Similarity:

For every metric space X we introduce two cardinal characteristics c o v ( X ) and c o v ( X ) describing the capacity of balls in X. We prove that these cardinal characteristics are invariant under coarse equivalence, and that two ultrametric spaces X,Y are coarsely equivalent if c o v ( X ) = c o v ( X ) = c o v ( Y ) = c o v ( Y ) . This implies that an ultrametric space X is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if c o v ( X ) = c o v ( X ) . Moreover, two isometrically homogeneous ultrametric spaces X,Y are coarsely equivalent if and...

L p ( ) boundedness for the commutator of a homogeneous singular integral operator

Guoen Hu (2003)

Studia Mathematica

Similarity:

The commutator of a singular integral operator with homogeneous kernel Ω(x)/|x|ⁿ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that Ω L ( l o g L ) k + 1 ( S n - 1 ) is a sufficient condition for the kth order commutator to be bounded on L p ( ) for all 1 < p < ∞. The corresponding maximal operator is also considered.

A note on q -partial difference equations and some applications to generating functions and q -integrals

Da-Wei Niu, Jian Cao (2019)

Czechoslovak Mathematical Journal

Similarity:

We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan q -beta integrals. At last,...

Homogeneity and non-coincidence of Hausdorff and box dimensions for subsets of ℝⁿ

Anders Nilsson, Peter Wingren (2007)

Studia Mathematica

Similarity:

A class of subsets of ℝⁿ is constructed that have certain homogeneity and non-coincidence properties with respect to Hausdorff and box dimensions. For each triple (r,s,t) of numbers in the interval (0,n] with r < s < t, a compact set K is constructed so that for any non-empty subset U relatively open in K, we have ( d i m H ( U ) , d i m ̲ B ( U ) , d i m ¯ B ( U ) ) = ( r , s , t ) . Moreover, 2 - n H r ( K ) 2 n r / 2 .

Type and cotype of operator spaces

Hun Hee Lee (2008)

Studia Mathematica

Similarity:

We consider two operator space versions of type and cotype, namely S p -type, S q -cotype and type (p,H), cotype (q,H) for a homogeneous Hilbertian operator space H and 1 ≤ p ≤ 2 ≤ q ≤ ∞, generalizing “OH-cotype 2” of G. Pisier. We compute type and cotype of some Hilbertian operator spaces and L p spaces, and we investigate the relationship between a homogeneous Hilbertian space H and operator spaces with cotype (2,H). As applications we consider operator space versions of generalized little...

On highly nonintegrable functions and homogeneous polynomials

P. Wojtaszczyk (1997)

Annales Polonici Mathematici

Similarity:

We construct a sequence of homogeneous polynomials on the unit ball d in d which are big at each point of the unit sphere . As an application we construct a holomorphic function on d which is not integrable with any power on the intersection of d with any complex subspace.

Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations

Dachun Yang (2005)

Studia Mathematica

Similarity:

Let ( X , ϱ , μ ) d , θ be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x’,y ∈ X, | ϱ ( x , y ) - ϱ ( x ' , y ) | C ϱ ( x , x ' ) θ [ ϱ ( x , y ) + ϱ ( x ' , y ) ] 1 - θ , and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X, μ ( y X : ϱ ( x , y ) < r ) r d . Let ε ∈ (0,θ], |s| < ε and maxd/(d+ε),d/(d+s+ε) < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces F q s ( X ) and establishes their frame characterizations by first establishing a Plancherel-Pólya-type...

Homogeneous colourings of graphs

Tomáš Madaras, Mária Šurimová (2023)

Mathematica Bohemica

Similarity:

A proper vertex k -colouring of a graph G is called l -homogeneous if the number of colours in the neigbourhood of each vertex of G equals l . We explore basic properties (the existence and the number of used colours) of homogeneous colourings of graphs in general as well as of some specific graph families, in particular planar graphs.

A subelliptic Bourgain–Brezis inequality

Yi Wang, Po-Lam Yung (2014)

Journal of the European Mathematical Society

Similarity:

We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space N L ˙ 1 , Q by L functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group n .

Lower bounds for norms of products of polynomials on L p spaces

Daniel Carando, Damián Pinasco, Jorge Tomás Rodríguez (2013)

Studia Mathematica

Similarity:

For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on L p ( μ ) , whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes p . For p > 2 we present some estimates on the constants involved.

Limiting Sobolev inequalities for vector fields and canceling linear differential operators

Jean Van Schaftingen (2013)

Journal of the European Mathematical Society

Similarity:

The estimate D k - 1 u L n / ( n - 1 ) A ( D ) u L 1 is shown to hold if and only if A ( D ) is elliptic and canceling. Here A ( D ) is a homogeneous linear differential operator A ( D ) of order k on n from a vector space V to a vector space E . The operator A ( D ) is defined to be canceling if ξ n { 0 } A ( ξ ) [ V ] = { 0 } . This result implies in particular the classical Gagliardo–Nirenberg–Sobolev inequality, the Korn–Sobolev inequality and Hodge–Sobolev estimates for differential forms due to J. Bourgain and H. Brezis. In the proof, the class of cocanceling homogeneous...

M-ideals of homogeneous polynomials

Verónica Dimant (2011)

Studia Mathematica

Similarity:

We study the problem of whether w ( E ) , the space of n-homogeneous polynomials which are weakly continuous on bounded sets, is an M-ideal in the space (ⁿE) of continuous n-homogeneous polynomials. We obtain conditions that ensure this fact and present some examples. We prove that if w ( E ) is an M-ideal in (ⁿE), then w ( E ) coincides with w 0 ( E ) (n-homogeneous polynomials that are weakly continuous on bounded sets at 0). We introduce a polynomial version of property (M) and derive that if w ( E ) = w 0 ( E ) and (E) is an...