Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings

Vincenzo de Filippis

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 271-292
  • ISSN: 0011-4642

Abstract

top
Let R be a prime ring of characteristic different from 2, Q r its right Martindale quotient ring and C its extended centroid. Suppose that F , G are generalized skew derivations of R with the same associated automorphism α , and p ( x 1 , ... , x n ) is a non-central polynomial over C such that [ F ( x ) , α ( y ) ] = G ( [ x , y ] ) for all x , y { p ( r 1 , ... , r n ) : r 1 , ... , r n R } . Then there exists λ C such that F ( x ) = G ( x ) = λ α ( x ) for all x R .

How to cite

top

de Filippis, Vincenzo. "Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings." Czechoslovak Mathematical Journal 66.1 (2016): 271-292. <http://eudml.org/doc/276784>.

@article{deFilippis2016,
abstract = {Let $R$ be a prime ring of characteristic different from 2, $Q_r$ its right Martindale quotient ring and $C$ its extended centroid. Suppose that $F$, $G$ are generalized skew derivations of $R$ with the same associated automorphism $\alpha $, and $p(x_1,\ldots ,x_n)$ is a non-central polynomial over $C$ such that \[ [F(x),\alpha (y)]=G([x,y]) \] for all $x,y \in \lbrace p(r_1,\ldots ,r_n)\colon r_1,\ldots ,r_n \in R\rbrace $. Then there exists $\lambda \in C$ such that $F(x)=G(x)=\lambda \alpha (x)$ for all $x\in R$.},
author = {de Filippis, Vincenzo},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized skew derivation; prime ring},
language = {eng},
number = {1},
pages = {271-292},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings},
url = {http://eudml.org/doc/276784},
volume = {66},
year = {2016},
}

TY - JOUR
AU - de Filippis, Vincenzo
TI - Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 271
EP - 292
AB - Let $R$ be a prime ring of characteristic different from 2, $Q_r$ its right Martindale quotient ring and $C$ its extended centroid. Suppose that $F$, $G$ are generalized skew derivations of $R$ with the same associated automorphism $\alpha $, and $p(x_1,\ldots ,x_n)$ is a non-central polynomial over $C$ such that \[ [F(x),\alpha (y)]=G([x,y]) \] for all $x,y \in \lbrace p(r_1,\ldots ,r_n)\colon r_1,\ldots ,r_n \in R\rbrace $. Then there exists $\lambda \in C$ such that $F(x)=G(x)=\lambda \alpha (x)$ for all $x\in R$.
LA - eng
KW - generalized skew derivation; prime ring
UR - http://eudml.org/doc/276784
ER -

References

top
  1. Arga{ç}, N., Carini, L., Filippis, V. De, 10.11650/twjm/1500574164, Taiwanese J. Math. 12 (2008), 419-433. (2008) Zbl1153.16029MR2402125DOI10.11650/twjm/1500574164
  2. Brešar, M., Miers, C. R., 10.4153/CMB-1994-066-4, Can. Math. Bull. 37 (1994), 457-460. (1994) MR1303671DOI10.4153/CMB-1994-066-4
  3. Chang, J.-C., 10.11650/twjm/1500407520, Taiwanese J. Math. 7 (2003), 103-113. (2003) Zbl1048.16018MR1961042DOI10.11650/twjm/1500407520
  4. Chuang, C.-L., 10.1006/jabr.1999.8052, J. Algebra 224 (2000), 292-335. (2000) MR1739582DOI10.1006/jabr.1999.8052
  5. Chuang, C.-L., 10.1006/jabr.1993.1181, J. Algebra 160 (1993), 130-171. (1993) MR1237081DOI10.1006/jabr.1993.1181
  6. Chuang, C.-L., 10.1016/0021-8693(92)90023-F, J. Algebra 149 (1992), 371-404. (1992) MR1172436DOI10.1016/0021-8693(92)90023-F
  7. Chuang, C.-L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
  8. Chuang, C.-L., 10.1007/BF02779669, Isr. J. Math. 59 (1987), 98-106. (1987) MR0923664DOI10.1007/BF02779669
  9. Chuang, C.-L., Lee, T.-K., 10.1016/j.jalgebra.2003.12.032, J. Algebra 288 (2005), 59-77. (2005) Zbl1073.16021MR2138371DOI10.1016/j.jalgebra.2003.12.032
  10. Chuang, C.-L., Lee, T.-K., Rings with annihilator conditions on multilinear polynomials, Chin. J. Math. 24 (1996), 177-185. (1996) MR1401645
  11. Filippis, V. De, 10.1007/BF03191235, Collect. Math. 61 (2010), 303-322. (2010) Zbl1232.16029MR2732374DOI10.1007/BF03191235
  12. Vincenzo, O. M. Di, On the n th centralizer of a Lie ideal, Boll. Unione Mat. Ital., VII. Ser. 3-A (1989), 77-85. (1989) MR0990089
  13. Faith, C., Utumi, Y., 10.1007/BF01895723, Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. (1963) Zbl0147.28602MR0155858DOI10.1007/BF01895723
  14. Herstein, I. N., Topics in Ring Theory, Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). (1969) Zbl0232.16001MR0271135
  15. Jacobson, N., 10.1007/BFb0070023, Lecture Notes in Mathematics 441 Springer, Berlin (1975). (1975) MR0369421DOI10.1007/BFb0070023
  16. Jacobson, N., 10.1090/coll/037, American Mathematical Society Colloquium Publications 37 AMS, Providence (1956). (1956) Zbl0073.02002MR0081264DOI10.1090/coll/037
  17. Lanski, C., Montgomery, S., 10.2140/pjm.1972.42.117, Pac. J. Math. 42 (1972), 117-136. (1972) MR0323839DOI10.2140/pjm.1972.42.117
  18. Lin, J.-S., Liu, C.-K., Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl. 428 (2008), 1601-1609. (2008) Zbl1141.16021MR2388643
  19. Liu, C.-K., 10.1007/s00605-010-0281-1, Monatsh. Math. 166 (2012), 453-465. (2012) Zbl1250.16029MR2925149DOI10.1007/s00605-010-0281-1
  20. Liu, C.-K., Liau, P.-K., 10.1080/03081087.2010.535819, Linear Multilinear Algebra 59 (2011), 905-915. (2011) Zbl1230.16033MR2826060DOI10.1080/03081087.2010.535819
  21. Ma, J., Xu, X. W., Niu, F. W., 10.1007/s10114-008-7445-0, Acta Math. Sin., Engl. Ser. 24 (2008), 1835-1842. (2008) Zbl1169.16020MR2453063DOI10.1007/s10114-008-7445-0
  22. III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) MR0238897DOI10.1016/0021-8693(69)90029-5
  23. Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1958), 1093-1100. (1958) Zbl0082.03003MR0095863DOI10.1090/S0002-9939-1957-0095863-0
  24. Wong, T.-L., Derivations with power-central values on multilinear polynomials, Algebra Colloq. 3 (1996), 369-378. (1996) Zbl0864.16031MR1422975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.