Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 271-292
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topde Filippis, Vincenzo. "Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings." Czechoslovak Mathematical Journal 66.1 (2016): 271-292. <http://eudml.org/doc/276784>.
@article{deFilippis2016,
abstract = {Let $R$ be a prime ring of characteristic different from 2, $Q_r$ its right Martindale quotient ring and $C$ its extended centroid. Suppose that $F$, $G$ are generalized skew derivations of $R$ with the same associated automorphism $\alpha $, and $p(x_1,\ldots ,x_n)$ is a non-central polynomial over $C$ such that \[ [F(x),\alpha (y)]=G([x,y]) \]
for all $x,y \in \lbrace p(r_1,\ldots ,r_n)\colon r_1,\ldots ,r_n \in R\rbrace $. Then there exists $\lambda \in C$ such that $F(x)=G(x)=\lambda \alpha (x)$ for all $x\in R$.},
author = {de Filippis, Vincenzo},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized skew derivation; prime ring},
language = {eng},
number = {1},
pages = {271-292},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings},
url = {http://eudml.org/doc/276784},
volume = {66},
year = {2016},
}
TY - JOUR
AU - de Filippis, Vincenzo
TI - Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 271
EP - 292
AB - Let $R$ be a prime ring of characteristic different from 2, $Q_r$ its right Martindale quotient ring and $C$ its extended centroid. Suppose that $F$, $G$ are generalized skew derivations of $R$ with the same associated automorphism $\alpha $, and $p(x_1,\ldots ,x_n)$ is a non-central polynomial over $C$ such that \[ [F(x),\alpha (y)]=G([x,y]) \]
for all $x,y \in \lbrace p(r_1,\ldots ,r_n)\colon r_1,\ldots ,r_n \in R\rbrace $. Then there exists $\lambda \in C$ such that $F(x)=G(x)=\lambda \alpha (x)$ for all $x\in R$.
LA - eng
KW - generalized skew derivation; prime ring
UR - http://eudml.org/doc/276784
ER -
References
top- Arga{ç}, N., Carini, L., Filippis, V. De, 10.11650/twjm/1500574164, Taiwanese J. Math. 12 (2008), 419-433. (2008) Zbl1153.16029MR2402125DOI10.11650/twjm/1500574164
- Brešar, M., Miers, C. R., 10.4153/CMB-1994-066-4, Can. Math. Bull. 37 (1994), 457-460. (1994) MR1303671DOI10.4153/CMB-1994-066-4
- Chang, J.-C., 10.11650/twjm/1500407520, Taiwanese J. Math. 7 (2003), 103-113. (2003) Zbl1048.16018MR1961042DOI10.11650/twjm/1500407520
- Chuang, C.-L., 10.1006/jabr.1999.8052, J. Algebra 224 (2000), 292-335. (2000) MR1739582DOI10.1006/jabr.1999.8052
- Chuang, C.-L., 10.1006/jabr.1993.1181, J. Algebra 160 (1993), 130-171. (1993) MR1237081DOI10.1006/jabr.1993.1181
- Chuang, C.-L., 10.1016/0021-8693(92)90023-F, J. Algebra 149 (1992), 371-404. (1992) MR1172436DOI10.1016/0021-8693(92)90023-F
- Chuang, C.-L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
- Chuang, C.-L., 10.1007/BF02779669, Isr. J. Math. 59 (1987), 98-106. (1987) MR0923664DOI10.1007/BF02779669
- Chuang, C.-L., Lee, T.-K., 10.1016/j.jalgebra.2003.12.032, J. Algebra 288 (2005), 59-77. (2005) Zbl1073.16021MR2138371DOI10.1016/j.jalgebra.2003.12.032
- Chuang, C.-L., Lee, T.-K., Rings with annihilator conditions on multilinear polynomials, Chin. J. Math. 24 (1996), 177-185. (1996) MR1401645
- Filippis, V. De, 10.1007/BF03191235, Collect. Math. 61 (2010), 303-322. (2010) Zbl1232.16029MR2732374DOI10.1007/BF03191235
- Vincenzo, O. M. Di, On the th centralizer of a Lie ideal, Boll. Unione Mat. Ital., VII. Ser. 3-A (1989), 77-85. (1989) MR0990089
- Faith, C., Utumi, Y., 10.1007/BF01895723, Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. (1963) Zbl0147.28602MR0155858DOI10.1007/BF01895723
- Herstein, I. N., Topics in Ring Theory, Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). (1969) Zbl0232.16001MR0271135
- Jacobson, N., 10.1007/BFb0070023, Lecture Notes in Mathematics 441 Springer, Berlin (1975). (1975) MR0369421DOI10.1007/BFb0070023
- Jacobson, N., 10.1090/coll/037, American Mathematical Society Colloquium Publications 37 AMS, Providence (1956). (1956) Zbl0073.02002MR0081264DOI10.1090/coll/037
- Lanski, C., Montgomery, S., 10.2140/pjm.1972.42.117, Pac. J. Math. 42 (1972), 117-136. (1972) MR0323839DOI10.2140/pjm.1972.42.117
- Lin, J.-S., Liu, C.-K., Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl. 428 (2008), 1601-1609. (2008) Zbl1141.16021MR2388643
- Liu, C.-K., 10.1007/s00605-010-0281-1, Monatsh. Math. 166 (2012), 453-465. (2012) Zbl1250.16029MR2925149DOI10.1007/s00605-010-0281-1
- Liu, C.-K., Liau, P.-K., 10.1080/03081087.2010.535819, Linear Multilinear Algebra 59 (2011), 905-915. (2011) Zbl1230.16033MR2826060DOI10.1080/03081087.2010.535819
- Ma, J., Xu, X. W., Niu, F. W., 10.1007/s10114-008-7445-0, Acta Math. Sin., Engl. Ser. 24 (2008), 1835-1842. (2008) Zbl1169.16020MR2453063DOI10.1007/s10114-008-7445-0
- III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) MR0238897DOI10.1016/0021-8693(69)90029-5
- Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1958), 1093-1100. (1958) Zbl0082.03003MR0095863DOI10.1090/S0002-9939-1957-0095863-0
- Wong, T.-L., Derivations with power-central values on multilinear polynomials, Algebra Colloq. 3 (1996), 369-378. (1996) Zbl0864.16031MR1422975
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.