Integrability for very weak solutions to boundary value problems of p -harmonic equation

Hongya Gao; Shuang Liang; Yi Cui

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 101-110
  • ISSN: 0011-4642

Abstract

top
The paper deals with very weak solutions u θ + W 0 1 , r ( Ω ) , max { 1 , p - 1 } < r < p < n , to boundary value problems of the p -harmonic equation - div ( | u ( x ) | p - 2 u ( x ) ) = 0 , x Ω , u ( x ) = θ ( x ) , x Ω . ( * ) We show that, under the assumption θ W 1 , q ( Ω ) , q > r , any very weak solution u to the boundary value problem ( * ) is integrable with u θ + L weak q * ( Ω ) for q < n , θ + L weak τ ( Ω ) for q = n and any τ < , θ + L ( Ω ) for q > n , provided that r is sufficiently close to p .

How to cite

top

Gao, Hongya, Liang, Shuang, and Cui, Yi. "Integrability for very weak solutions to boundary value problems of $p$-harmonic equation." Czechoslovak Mathematical Journal 66.1 (2016): 101-110. <http://eudml.org/doc/276791>.

@article{Gao2016,
abstract = {The paper deals with very weak solutions $u\in \theta + W_0^\{1,r\}(\Omega )$, $\max \lbrace 1,p-1\rbrace <r<p<n$, to boundary value problems of the $p$-harmonic equation \[ \{\left\lbrace \begin\{array\}\{ll\} -\mbox\{div\}(|\nabla u(x)|^\{p-2\} \nabla u(x))=0, & x\in \Omega , \\ u(x)=\theta (x), & x\in \partial \Omega . \end\{array\}\right.\} \qquad \mathrm \{(*)\}\] We show that, under the assumption $\theta \in W^\{1,q\}(\Omega )$, $q>r$, any very weak solution $u$ to the boundary value problem ($*$) is integrable with \[ u\in \{\left\lbrace \begin\{array\}\{ll\} \theta +L\_\{\rm weak\}^\{q^*\}(\Omega ) & \mbox\{for \} q<n, \\ \theta +L\_\{\rm weak\}^\tau (\Omega ) & \mbox\{for \} q=n \mbox\{ and any \} \tau <\infty , \\ \theta +L^\infty (\Omega ) & \mbox\{for \} q>n, \end\{array\}\right.\} \] provided that $r$ is sufficiently close to $p$.},
author = {Gao, Hongya, Liang, Shuang, Cui, Yi},
journal = {Czechoslovak Mathematical Journal},
keywords = {integrability; very weak solution; boundary value problem; $p$-harmonic equation},
language = {eng},
number = {1},
pages = {101-110},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integrability for very weak solutions to boundary value problems of $p$-harmonic equation},
url = {http://eudml.org/doc/276791},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Gao, Hongya
AU - Liang, Shuang
AU - Cui, Yi
TI - Integrability for very weak solutions to boundary value problems of $p$-harmonic equation
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 101
EP - 110
AB - The paper deals with very weak solutions $u\in \theta + W_0^{1,r}(\Omega )$, $\max \lbrace 1,p-1\rbrace <r<p<n$, to boundary value problems of the $p$-harmonic equation \[ {\left\lbrace \begin{array}{ll} -\mbox{div}(|\nabla u(x)|^{p-2} \nabla u(x))=0, & x\in \Omega , \\ u(x)=\theta (x), & x\in \partial \Omega . \end{array}\right.} \qquad \mathrm {(*)}\] We show that, under the assumption $\theta \in W^{1,q}(\Omega )$, $q>r$, any very weak solution $u$ to the boundary value problem ($*$) is integrable with \[ u\in {\left\lbrace \begin{array}{ll} \theta +L_{\rm weak}^{q^*}(\Omega ) & \mbox{for } q<n, \\ \theta +L_{\rm weak}^\tau (\Omega ) & \mbox{for } q=n \mbox{ and any } \tau <\infty , \\ \theta +L^\infty (\Omega ) & \mbox{for } q>n, \end{array}\right.} \] provided that $r$ is sufficiently close to $p$.
LA - eng
KW - integrability; very weak solution; boundary value problem; $p$-harmonic equation
UR - http://eudml.org/doc/276791
ER -

References

top
  1. Bensoussan, A., Frehse, J., 10.1007/978-3-662-12905-0_9, Applied Mathematical Sciences 151 Springer, Berlin (2002). (2002) Zbl1055.35002MR1917320DOI10.1007/978-3-662-12905-0_9
  2. Campanato, S., Sistemi ellittici in forma divergenza. Regolarità all'interno, Pubblicazioni della Classe di Scienze: Quaderni Italian Scuola Normale Superiore Pisa, Pisa (1980). (1980) MR0668196
  3. Gao, H., 10.1007/s11425-013-4601-5, Sci. China, Math. 57 (2014), 111-122. (2014) Zbl1304.35298MR3146520DOI10.1007/s11425-013-4601-5
  4. Gao, H., Chu, Y. M., Quasiregular Mappings and A -harmonic Equations, Science Press Beijing (2013), Chinese. (2013) 
  5. Gao, H., Huang, Q., 10.1016/j.na.2012.03.026, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4761-4765. (2012) Zbl1250.49038MR2927542DOI10.1016/j.na.2012.03.026
  6. Gao, H., Liu, C., Tian, H., 10.1016/j.jmaa.2012.12.037, J. Math. Anal. Appl. 401 (2013), 881-887. (2013) Zbl1266.35065MR3018035DOI10.1016/j.jmaa.2012.12.037
  7. Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies 105 Princeton University Press, Princeton (1983). (1983) Zbl0516.49003MR0717034
  8. Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften Springer, Berlin (1977). (1977) MR0473443
  9. Greco, L., Iwaniec, T., Sbordone, C., 10.1007/BF02678192, Manuscr. Math. 92 (1997), 249-258. (1997) MR1428651DOI10.1007/BF02678192
  10. Giusti, E., Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana Bologna Italian (1994). (1994) MR1707291
  11. Iwaniec, T., p -harmonic tensors and quasiregular mappings, Ann. Math. (2) 136 (1992), 589-624. (1992) MR1189867
  12. Iwaniec, T., Martin, G., Geometric Function Theory and Nonlinear Analysis, Oxford Mathematical Monographs Oxford University Press, Oxford (2001). (2001) Zbl1045.30011MR1859913
  13. Iwaniec, T., Migliaccio, L., Nania, L., Sbordone, C., 10.7146/math.scand.a-12519, Math. Scand. 75 (1994), 263-279. (1994) MR1319735DOI10.7146/math.scand.a-12519
  14. Iwaniec, T., Sbordone, C., Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. (1994) MR1288682
  15. Iwaniec, T., Scott, C., Stroffolini, B., Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. (4) 177 (1999), 37-115. (1999) MR1747627
  16. Kufner, A., John, O., Fučík, S., Function Spaces, Monographs and Textsbooks on Mechanics of Solids and Fluids; Mechanics: Analysis Noordhoff International Publishing, Leyden; Academia, Praha (1977). (1977) MR0482102
  17. Ladyzhenskaya, O. A., Ural'tseva, N. N., Linear and Quasilinear Elliptic Equations, Mathematics in Science and Engineering Academic Press, New York (1968). (1968) Zbl0177.37404MR0244627
  18. Leonetti, F., Siepe, F., 10.1007/s00229-013-0641-y, Manuscr. Math. 144 (2014), 91-98. (2014) Zbl1287.49041MR3193770DOI10.1007/s00229-013-0641-y
  19. Leonetti, F., Siepe, F., 10.1016/j.na.2011.11.028, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2867-2873. (2012) Zbl1244.35053MR2878481DOI10.1016/j.na.2011.11.028
  20. Lindqvist, P., Notes on the p -Laplace Equation, Report. University of Jyväskylä Department of Mathematics and Statistics 102 University of Jyväskylä, Jyväskylä (2006). (2006) MR2242021
  21. Meyers, N. G., Elcrat, A., 10.1215/S0012-7094-75-04211-8, Duke Math. J. 42 (1975), 121-136. (1975) MR0417568DOI10.1215/S0012-7094-75-04211-8
  22. C. B. Morrey, Jr., 10.1007/978-3-540-69952-1, Die Grundlehren der mathematischen Wissenschaften 130 Springer, New York (1966). (1966) Zbl0142.38701MR0202511DOI10.1007/978-3-540-69952-1
  23. Stampacchia, G., Èquations elliptiques du second ordre à coefficients discontinus, Séminaire de mathématiques supérieures 16 (été 1965) Les Presses de l'Université de Montréal, Montreal, Que. French (1966). (1966) MR0251373

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.