Integrability for very weak solutions to boundary value problems of -harmonic equation
Hongya Gao; Shuang Liang; Yi Cui
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 101-110
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGao, Hongya, Liang, Shuang, and Cui, Yi. "Integrability for very weak solutions to boundary value problems of $p$-harmonic equation." Czechoslovak Mathematical Journal 66.1 (2016): 101-110. <http://eudml.org/doc/276791>.
@article{Gao2016,
abstract = {The paper deals with very weak solutions $u\in \theta + W_0^\{1,r\}(\Omega )$, $\max \lbrace 1,p-1\rbrace <r<p<n$, to boundary value problems of the $p$-harmonic equation \[ \{\left\lbrace \begin\{array\}\{ll\} -\mbox\{div\}(|\nabla u(x)|^\{p-2\} \nabla u(x))=0, & x\in \Omega , \\ u(x)=\theta (x), & x\in \partial \Omega . \end\{array\}\right.\} \qquad \mathrm \{(*)\}\]
We show that, under the assumption $\theta \in W^\{1,q\}(\Omega )$, $q>r$, any very weak solution $u$ to the boundary value problem ($*$) is integrable with \[ u\in \{\left\lbrace \begin\{array\}\{ll\} \theta +L\_\{\rm weak\}^\{q^*\}(\Omega ) & \mbox\{for \} q<n, \\ \theta +L\_\{\rm weak\}^\tau (\Omega ) & \mbox\{for \} q=n \mbox\{ and any \} \tau <\infty , \\ \theta +L^\infty (\Omega ) & \mbox\{for \} q>n, \end\{array\}\right.\} \]
provided that $r$ is sufficiently close to $p$.},
author = {Gao, Hongya, Liang, Shuang, Cui, Yi},
journal = {Czechoslovak Mathematical Journal},
keywords = {integrability; very weak solution; boundary value problem; $p$-harmonic equation},
language = {eng},
number = {1},
pages = {101-110},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integrability for very weak solutions to boundary value problems of $p$-harmonic equation},
url = {http://eudml.org/doc/276791},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Gao, Hongya
AU - Liang, Shuang
AU - Cui, Yi
TI - Integrability for very weak solutions to boundary value problems of $p$-harmonic equation
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 101
EP - 110
AB - The paper deals with very weak solutions $u\in \theta + W_0^{1,r}(\Omega )$, $\max \lbrace 1,p-1\rbrace <r<p<n$, to boundary value problems of the $p$-harmonic equation \[ {\left\lbrace \begin{array}{ll} -\mbox{div}(|\nabla u(x)|^{p-2} \nabla u(x))=0, & x\in \Omega , \\ u(x)=\theta (x), & x\in \partial \Omega . \end{array}\right.} \qquad \mathrm {(*)}\]
We show that, under the assumption $\theta \in W^{1,q}(\Omega )$, $q>r$, any very weak solution $u$ to the boundary value problem ($*$) is integrable with \[ u\in {\left\lbrace \begin{array}{ll} \theta +L_{\rm weak}^{q^*}(\Omega ) & \mbox{for } q<n, \\ \theta +L_{\rm weak}^\tau (\Omega ) & \mbox{for } q=n \mbox{ and any } \tau <\infty , \\ \theta +L^\infty (\Omega ) & \mbox{for } q>n, \end{array}\right.} \]
provided that $r$ is sufficiently close to $p$.
LA - eng
KW - integrability; very weak solution; boundary value problem; $p$-harmonic equation
UR - http://eudml.org/doc/276791
ER -
References
top- Bensoussan, A., Frehse, J., 10.1007/978-3-662-12905-0_9, Applied Mathematical Sciences 151 Springer, Berlin (2002). (2002) Zbl1055.35002MR1917320DOI10.1007/978-3-662-12905-0_9
- Campanato, S., Sistemi ellittici in forma divergenza. Regolarità all'interno, Pubblicazioni della Classe di Scienze: Quaderni Italian Scuola Normale Superiore Pisa, Pisa (1980). (1980) MR0668196
- Gao, H., 10.1007/s11425-013-4601-5, Sci. China, Math. 57 (2014), 111-122. (2014) Zbl1304.35298MR3146520DOI10.1007/s11425-013-4601-5
- Gao, H., Chu, Y. M., Quasiregular Mappings and -harmonic Equations, Science Press Beijing (2013), Chinese. (2013)
- Gao, H., Huang, Q., 10.1016/j.na.2012.03.026, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4761-4765. (2012) Zbl1250.49038MR2927542DOI10.1016/j.na.2012.03.026
- Gao, H., Liu, C., Tian, H., 10.1016/j.jmaa.2012.12.037, J. Math. Anal. Appl. 401 (2013), 881-887. (2013) Zbl1266.35065MR3018035DOI10.1016/j.jmaa.2012.12.037
- Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies 105 Princeton University Press, Princeton (1983). (1983) Zbl0516.49003MR0717034
- Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften Springer, Berlin (1977). (1977) MR0473443
- Greco, L., Iwaniec, T., Sbordone, C., 10.1007/BF02678192, Manuscr. Math. 92 (1997), 249-258. (1997) MR1428651DOI10.1007/BF02678192
- Giusti, E., Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana Bologna Italian (1994). (1994) MR1707291
- Iwaniec, T., -harmonic tensors and quasiregular mappings, Ann. Math. (2) 136 (1992), 589-624. (1992) MR1189867
- Iwaniec, T., Martin, G., Geometric Function Theory and Nonlinear Analysis, Oxford Mathematical Monographs Oxford University Press, Oxford (2001). (2001) Zbl1045.30011MR1859913
- Iwaniec, T., Migliaccio, L., Nania, L., Sbordone, C., 10.7146/math.scand.a-12519, Math. Scand. 75 (1994), 263-279. (1994) MR1319735DOI10.7146/math.scand.a-12519
- Iwaniec, T., Sbordone, C., Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. (1994) MR1288682
- Iwaniec, T., Scott, C., Stroffolini, B., Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. (4) 177 (1999), 37-115. (1999) MR1747627
- Kufner, A., John, O., Fučík, S., Function Spaces, Monographs and Textsbooks on Mechanics of Solids and Fluids; Mechanics: Analysis Noordhoff International Publishing, Leyden; Academia, Praha (1977). (1977) MR0482102
- Ladyzhenskaya, O. A., Ural'tseva, N. N., Linear and Quasilinear Elliptic Equations, Mathematics in Science and Engineering Academic Press, New York (1968). (1968) Zbl0177.37404MR0244627
- Leonetti, F., Siepe, F., 10.1007/s00229-013-0641-y, Manuscr. Math. 144 (2014), 91-98. (2014) Zbl1287.49041MR3193770DOI10.1007/s00229-013-0641-y
- Leonetti, F., Siepe, F., 10.1016/j.na.2011.11.028, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2867-2873. (2012) Zbl1244.35053MR2878481DOI10.1016/j.na.2011.11.028
- Lindqvist, P., Notes on the -Laplace Equation, Report. University of Jyväskylä Department of Mathematics and Statistics 102 University of Jyväskylä, Jyväskylä (2006). (2006) MR2242021
- Meyers, N. G., Elcrat, A., 10.1215/S0012-7094-75-04211-8, Duke Math. J. 42 (1975), 121-136. (1975) MR0417568DOI10.1215/S0012-7094-75-04211-8
- C. B. Morrey, Jr., 10.1007/978-3-540-69952-1, Die Grundlehren der mathematischen Wissenschaften 130 Springer, New York (1966). (1966) Zbl0142.38701MR0202511DOI10.1007/978-3-540-69952-1
- Stampacchia, G., Èquations elliptiques du second ordre à coefficients discontinus, Séminaire de mathématiques supérieures 16 (été 1965) Les Presses de l'Université de Montréal, Montreal, Que. French (1966). (1966) MR0251373
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.