Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 251-269
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Hongbin. "Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent." Czechoslovak Mathematical Journal 66.1 (2016): 251-269. <http://eudml.org/doc/276798>.
@article{Wang2016,
abstract = {Let $\Omega \in L^s(\{\mathrm \{S\}\}^\{n-1\})$ for $s\ge 1$ be a homogeneous function of degree zero and $b$ a BMO function. The commutator generated by the Marcinkiewicz integral $\mu _\Omega $ and $b$ is defined by \begin\{equation*\} \displaystyle [b,\mu \_\Omega ] (f)(x)=\biggl (\int ^\infty \_0\biggl |\int \_\{|x-y|\le t\} \frac\{\Omega (x-y)\}\{|x-y|^\{n-1\}\}[b(x)-b(y)]f(y) \{\rm d\} y\bigg |^2\frac\{\{\rm d\} t\}\{t^3\}\bigg )^\{1/2\}. \end\{equation*\}
In this paper, the author proves the $(L^\{p(\cdot )\}(\mathbb \{R\}^\{n\}),L^\{p(\cdot )\}(\mathbb \{R\}^\{n\}))$-boundedness of the Marcinkiewicz integral operator $\mu _\Omega $ and its commutator $[b,\mu _\Omega ]$ when $p(\cdot )$ satisfies some conditions. Moreover, the author obtains the corresponding result about $\mu _\Omega $ and $[b,\mu _\Omega ]$ on Herz spaces with variable exponent.},
author = {Wang, Hongbin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Herz space; variable exponent; commutator; Marcinkiewicz integral},
language = {eng},
number = {1},
pages = {251-269},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent},
url = {http://eudml.org/doc/276798},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Wang, Hongbin
TI - Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 251
EP - 269
AB - Let $\Omega \in L^s({\mathrm {S}}^{n-1})$ for $s\ge 1$ be a homogeneous function of degree zero and $b$ a BMO function. The commutator generated by the Marcinkiewicz integral $\mu _\Omega $ and $b$ is defined by \begin{equation*} \displaystyle [b,\mu _\Omega ] (f)(x)=\biggl (\int ^\infty _0\biggl |\int _{|x-y|\le t} \frac{\Omega (x-y)}{|x-y|^{n-1}}[b(x)-b(y)]f(y) {\rm d} y\bigg |^2\frac{{\rm d} t}{t^3}\bigg )^{1/2}. \end{equation*}
In this paper, the author proves the $(L^{p(\cdot )}(\mathbb {R}^{n}),L^{p(\cdot )}(\mathbb {R}^{n}))$-boundedness of the Marcinkiewicz integral operator $\mu _\Omega $ and its commutator $[b,\mu _\Omega ]$ when $p(\cdot )$ satisfies some conditions. Moreover, the author obtains the corresponding result about $\mu _\Omega $ and $[b,\mu _\Omega ]$ on Herz spaces with variable exponent.
LA - eng
KW - Herz space; variable exponent; commutator; Marcinkiewicz integral
UR - http://eudml.org/doc/276798
ER -
References
top- Capone, C., Cruz-Uribe, D., Fiorenza, A., 10.4171/RMI/511, Rev. Mat. Iberoam. 23 (2007), 743-770. (2007) Zbl1213.42063MR2414490DOI10.4171/RMI/511
- Cruz-Uribe, D. V., Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). (2013) Zbl1268.46002MR3026953
- Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
- Ding, Y., Fan, D., Pan, Y., 10.1512/iumj.1999.48.1696, Indiana Univ. Math. J. 48 (1999), 1037-1055. (1999) MR1736970DOI10.1512/iumj.1999.48.1696
- Ding, Y., Lu, S., Yabuta, K., 10.1016/S0022-247X(02)00230-5, J. Math. Anal. Appl. 275 (2002), 60-68. (2002) Zbl1019.42009MR1941772DOI10.1016/S0022-247X(02)00230-5
- Izuki, M., 10.1007/s12215-010-0015-1, Rend. Circ. Mat. Palermo (2) 59 (2010), 199-213. (2010) Zbl1202.42029MR2670690DOI10.1007/s12215-010-0015-1
- Izuki, M., 10.1007/s10476-010-0102-8, Anal. Math. 36 (2010), 33-50. (2010) Zbl1224.42025MR2606575DOI10.1007/s10476-010-0102-8
- Kováčik, O., Rákosník, J., On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
- Liu, Z., Wang, H., Boundedness of Marcinkiewicz integrals on Herz spaces with variable exponent, Jordan J. Math. Stat. 5 (2012), 223-239. (2012) Zbl1277.42018
- Muckenhoupt, B., Wheeden, R. L., 10.1090/S0002-9947-1971-0285938-7, Trans. Am. Math. Soc. 161 (1971), 249-258. (1971) MR0285938DOI10.1090/S0002-9947-1971-0285938-7
- Nakai, E., Sawano, Y., 10.1016/j.jfa.2012.01.004, J. Funct. Anal. 262 (2012), 3665-3748. (2012) Zbl1244.42012MR2899976DOI10.1016/j.jfa.2012.01.004
- Stein, E. M., 10.1090/S0002-9947-1958-0112932-2, Trans. Am. Math. Soc. 88 (1958), 430-466 corr. ibid. 98 186 (1961). (1961) MR0112932DOI10.1090/S0002-9947-1958-0112932-2
- Tan, J., Liu, Z. G., Some boundedness of homogeneous fractional integrals on variable exponent function spaces, Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. (2015) Zbl1340.42055MR3408398
- Wang, H., Fu, Z., Liu, Z., Higher-order commutators of Marcinkiewicz integrals on variable Lebesgue spaces, Acta Math. Sci., Ser. A Chin. Ed. 32 (2012), 1092-1101 Chinese. (2012) Zbl1289.42056MR3075205
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.