Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent

Hongbin Wang

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 251-269
  • ISSN: 0011-4642

Abstract

top
Let Ω L s ( S n - 1 ) for s 1 be a homogeneous function of degree zero and b a BMO function. The commutator generated by the Marcinkiewicz integral μ Ω and b is defined by [ b , μ Ω ] ( f ) ( x ) = ( 0 | x - y | t Ω ( x - y ) | x - y | n - 1 [ b ( x ) - b ( y ) ] f ( y ) d y | 2 d t t 3 1 / 2 . In this paper, the author proves the ( L p ( · ) ( n ) , L p ( · ) ( n ) ) -boundedness of the Marcinkiewicz integral operator μ Ω and its commutator [ b , μ Ω ] when p ( · ) satisfies some conditions. Moreover, the author obtains the corresponding result about μ Ω and [ b , μ Ω ] on Herz spaces with variable exponent.

How to cite

top

Wang, Hongbin. "Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent." Czechoslovak Mathematical Journal 66.1 (2016): 251-269. <http://eudml.org/doc/276798>.

@article{Wang2016,
abstract = {Let $\Omega \in L^s(\{\mathrm \{S\}\}^\{n-1\})$ for $s\ge 1$ be a homogeneous function of degree zero and $b$ a BMO function. The commutator generated by the Marcinkiewicz integral $\mu _\Omega $ and $b$ is defined by \begin\{equation*\} \displaystyle [b,\mu \_\Omega ] (f)(x)=\biggl (\int ^\infty \_0\biggl |\int \_\{|x-y|\le t\} \frac\{\Omega (x-y)\}\{|x-y|^\{n-1\}\}[b(x)-b(y)]f(y) \{\rm d\} y\bigg |^2\frac\{\{\rm d\} t\}\{t^3\}\bigg )^\{1/2\}. \end\{equation*\} In this paper, the author proves the $(L^\{p(\cdot )\}(\mathbb \{R\}^\{n\}),L^\{p(\cdot )\}(\mathbb \{R\}^\{n\}))$-boundedness of the Marcinkiewicz integral operator $\mu _\Omega $ and its commutator $[b,\mu _\Omega ]$ when $p(\cdot )$ satisfies some conditions. Moreover, the author obtains the corresponding result about $\mu _\Omega $ and $[b,\mu _\Omega ]$ on Herz spaces with variable exponent.},
author = {Wang, Hongbin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Herz space; variable exponent; commutator; Marcinkiewicz integral},
language = {eng},
number = {1},
pages = {251-269},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent},
url = {http://eudml.org/doc/276798},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Wang, Hongbin
TI - Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 251
EP - 269
AB - Let $\Omega \in L^s({\mathrm {S}}^{n-1})$ for $s\ge 1$ be a homogeneous function of degree zero and $b$ a BMO function. The commutator generated by the Marcinkiewicz integral $\mu _\Omega $ and $b$ is defined by \begin{equation*} \displaystyle [b,\mu _\Omega ] (f)(x)=\biggl (\int ^\infty _0\biggl |\int _{|x-y|\le t} \frac{\Omega (x-y)}{|x-y|^{n-1}}[b(x)-b(y)]f(y) {\rm d} y\bigg |^2\frac{{\rm d} t}{t^3}\bigg )^{1/2}. \end{equation*} In this paper, the author proves the $(L^{p(\cdot )}(\mathbb {R}^{n}),L^{p(\cdot )}(\mathbb {R}^{n}))$-boundedness of the Marcinkiewicz integral operator $\mu _\Omega $ and its commutator $[b,\mu _\Omega ]$ when $p(\cdot )$ satisfies some conditions. Moreover, the author obtains the corresponding result about $\mu _\Omega $ and $[b,\mu _\Omega ]$ on Herz spaces with variable exponent.
LA - eng
KW - Herz space; variable exponent; commutator; Marcinkiewicz integral
UR - http://eudml.org/doc/276798
ER -

References

top
  1. Capone, C., Cruz-Uribe, D., Fiorenza, A., 10.4171/RMI/511, Rev. Mat. Iberoam. 23 (2007), 743-770. (2007) Zbl1213.42063MR2414490DOI10.4171/RMI/511
  2. Cruz-Uribe, D. V., Fiorenza, A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). (2013) Zbl1268.46002MR3026953
  3. Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C., The boundedness of classical operators on variable L p spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264. (2006) Zbl1100.42012MR2210118
  4. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017 Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542
  5. Ding, Y., Fan, D., Pan, Y., 10.1512/iumj.1999.48.1696, Indiana Univ. Math. J. 48 (1999), 1037-1055. (1999) MR1736970DOI10.1512/iumj.1999.48.1696
  6. Ding, Y., Lu, S., Yabuta, K., 10.1016/S0022-247X(02)00230-5, J. Math. Anal. Appl. 275 (2002), 60-68. (2002) Zbl1019.42009MR1941772DOI10.1016/S0022-247X(02)00230-5
  7. Izuki, M., 10.1007/s12215-010-0015-1, Rend. Circ. Mat. Palermo (2) 59 (2010), 199-213. (2010) Zbl1202.42029MR2670690DOI10.1007/s12215-010-0015-1
  8. Izuki, M., 10.1007/s10476-010-0102-8, Anal. Math. 36 (2010), 33-50. (2010) Zbl1224.42025MR2606575DOI10.1007/s10476-010-0102-8
  9. Kováčik, O., Rákosník, J., On spaces L p ( x ) and W k , p ( x ) , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
  10. Liu, Z., Wang, H., Boundedness of Marcinkiewicz integrals on Herz spaces with variable exponent, Jordan J. Math. Stat. 5 (2012), 223-239. (2012) Zbl1277.42018
  11. Muckenhoupt, B., Wheeden, R. L., 10.1090/S0002-9947-1971-0285938-7, Trans. Am. Math. Soc. 161 (1971), 249-258. (1971) MR0285938DOI10.1090/S0002-9947-1971-0285938-7
  12. Nakai, E., Sawano, Y., 10.1016/j.jfa.2012.01.004, J. Funct. Anal. 262 (2012), 3665-3748. (2012) Zbl1244.42012MR2899976DOI10.1016/j.jfa.2012.01.004
  13. Stein, E. M., 10.1090/S0002-9947-1958-0112932-2, Trans. Am. Math. Soc. 88 (1958), 430-466 corr. ibid. 98 186 (1961). (1961) MR0112932DOI10.1090/S0002-9947-1958-0112932-2
  14. Tan, J., Liu, Z. G., Some boundedness of homogeneous fractional integrals on variable exponent function spaces, Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. (2015) Zbl1340.42055MR3408398
  15. Wang, H., Fu, Z., Liu, Z., Higher-order commutators of Marcinkiewicz integrals on variable Lebesgue spaces, Acta Math. Sci., Ser. A Chin. Ed. 32 (2012), 1092-1101 Chinese. (2012) Zbl1289.42056MR3075205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.