Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents

Hongbin Wang; Chenchen Niu

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 493-514
  • ISSN: 0011-4642

Abstract

top
We introduce a type of n -dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.

How to cite

top

Wang, Hongbin, and Niu, Chenchen. "Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents." Czechoslovak Mathematical Journal 74.2 (2024): 493-514. <http://eudml.org/doc/299540>.

@article{Wang2024,
abstract = {We introduce a type of $n$-dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.},
author = {Wang, Hongbin, Niu, Chenchen},
journal = {Czechoslovak Mathematical Journal},
keywords = {bilinear fractional Hardy operator; rough kernel; central Morrey space; variable exponent},
language = {eng},
number = {2},
pages = {493-514},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents},
url = {http://eudml.org/doc/299540},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Wang, Hongbin
AU - Niu, Chenchen
TI - Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 493
EP - 514
AB - We introduce a type of $n$-dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.
LA - eng
KW - bilinear fractional Hardy operator; rough kernel; central Morrey space; variable exponent
UR - http://eudml.org/doc/299540
ER -

References

top
  1. Alvarez, J., Lakey, J., Guzmán-Partida, M., Spaces of bounded λ -central mean oscillation, Morrey spaces, and λ -central Carleson measures, Collect. Math. 51 (2000), 1-47. (2000) Zbl0948.42013MR1757848
  2. Capone, C., Cruz-Uribe, D., Fiorenza, A., 10.4171/RMI/511, Rev. Mat. Iberoam. 23 (2007), 743-770. (2007) Zbl1213.42063MR2414490DOI10.4171/RMI/511
  3. Christ, M., Grafakos, L., 10.1090/S0002-9939-1995-1239796-6, Proc. Am. Math. Soc. 123 (1995), 1687-1693. (1995) Zbl0830.42009MR1239796DOI10.1090/S0002-9939-1995-1239796-6
  4. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., The maximal function on variable L p spaces, Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. (2003) Zbl1037.42023MR1976842
  5. Cruz-Uribe, D., Wang, D., 10.1512/iumj.2014.63.5232, Indiana Univ. Math. J. 63 (2014), 447-493. (2014) Zbl1311.42053MR3233216DOI10.1512/iumj.2014.63.5232
  6. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  7. Fu, Z. W., Gong, S. L., Lu, S. Z., Yuan, W., 10.1515/forum-2013-0064, Forum Math. 27 (2015), 2825-2851. (2015) Zbl1331.42016MR3393380DOI10.1515/forum-2013-0064
  8. Fu, Z., Lin, Y., 10.12386/A2010sxxb0103, Acta Math. Sin., Chin. Ser. 53 (2010), 925-932 Chinese. (2010) Zbl1240.42040MR2722928DOI10.12386/A2010sxxb0103
  9. Fu, Z., Liu, Z., Lu, S., Wang, H., 10.1007/s11425-007-0094-4, Sci. China, Ser. A 50 (2007), 1418-1426. (2007) Zbl1131.42012MR2390459DOI10.1007/s11425-007-0094-4
  10. Fu, Z., Lu, S., Shi, S., 10.1515/forum-2020-0243, Forum Math. 33 (2021), 505-529. (2021) Zbl1491.42035MR4223073DOI10.1515/forum-2020-0243
  11. Fu, Z., Lu, S., Wang, H., Wang, L., 10.5186/aasfm.2019.4431, Ann. Acad. Sci. Fenn., Math. 44 (2019), 505-522. (2019) Zbl1412.42059MR3919152DOI10.5186/aasfm.2019.4431
  12. Fu, Z., Lu, S., Zhao, F., 10.1007/s11425-010-4110-8, Sci. China, Math. 54 (2011), 95-104. (2011) Zbl1226.47050MR2764788DOI10.1007/s11425-010-4110-8
  13. Hardy, G. H., 10.1007/BF01199965, Math. Z. 6 (1920), 314-317 9999JFM99999 47.0207.01. (1920) MR1544414DOI10.1007/BF01199965
  14. Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M., 10.1016/j.na.2010.02.033, Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. (2010) Zbl1188.35072MR2639204DOI10.1016/j.na.2010.02.033
  15. Ho, K.-P., 10.1007/s00009-016-0811-8, Mediterr. J. Math. 14 (2017), Article ID 79, 19 pages. (2017) Zbl1367.26034MR3620157DOI10.1007/s00009-016-0811-8
  16. Hussain, A., Asim, M., Jarad, F., 10.1155/2022/5855068, J. Math. 2022 (2022), Article ID 5855068, 12 pages. (2022) MR4425886DOI10.1155/2022/5855068
  17. Izuki, M., 10.1007/s10476-010-0102-8, Anal. Math. 36 (2010), 33-50. (2010) Zbl1224.42025MR2606575DOI10.1007/s10476-010-0102-8
  18. Kováčik, O., Rákosník, J., 10.21136/CMJ.1991.102493, Czech. Math. J. 41 (1991), 592-618. (1991) Zbl0784.46029MR1134951DOI10.21136/CMJ.1991.102493
  19. Mizuta, Y., Nekvinda, A., Shimomura, T., 10.4064/sm227-1-1, Stud. Math. 227 (2015), 1-19. (2015) Zbl1328.47049MR3359954DOI10.4064/sm227-1-1
  20. Mizuta, Y., Ohno, T., Shimomura, T., 10.14492/hokmj/1470053290, Hokkaido Math. J. 44 (2015), 185-201. (2015) Zbl1334.31004MR3532106DOI10.14492/hokmj/1470053290
  21. Nakai, E., Sawano, Y., 10.1016/j.jfa.2012.01.004, J. Funct. Anal. 262 (2012), 3665-3748. (2012) Zbl1244.42012MR2899976DOI10.1016/j.jfa.2012.01.004
  22. Orlicz, W., 10.4064/sm-3-1-200-211, Stud. Math. 3 (1931), 200-212 German. (1931) Zbl0003.25203DOI10.4064/sm-3-1-200-211
  23. Růžička, M., 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
  24. Shi, S., Fu, Z., Lu, S., 10.2140/pjm.2020.307.239, Pac. J. Math. 307 (2020), 239-256. (2020) Zbl1445.42015MR4131808DOI10.2140/pjm.2020.307.239
  25. Shi, S., Lu, S., 10.1016/j.jmaa.2015.03.083, J. Math. Anal. Appl. 429 (2015), 713-732. (2015) Zbl1317.42022MR3342488DOI10.1016/j.jmaa.2015.03.083
  26. Tan, J., Liu, Z., 10.12386/A2015sxxb0030, Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. (2015) Zbl1340.42055MR3408398DOI10.12386/A2015sxxb0030
  27. Tan, J., Liu, Z., Zhao, J., 10.7153/jmi-2017-11-57, J. Math. Inequal. 11 (2017), 715-734. (2017) Zbl1375.42033MR3732810DOI10.7153/jmi-2017-11-57
  28. Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics 123. Academic Press, New York (1986). (1986) Zbl0621.42001MR0869816
  29. Wang, H., 10.1007/s10587-016-0254-1, Czech. Math. J. 66 (2016), 251-269. (2016) Zbl1413.42029MR3483237DOI10.1007/s10587-016-0254-1
  30. Wang, H., 10.1215/21562261-3600175, Kyoto J. Math. 56 (2016), 559-573. (2016) Zbl1348.42014MR3542775DOI10.1215/21562261-3600175
  31. Wang, H., 10.4134/JKMS.j150771, J. Korean Math. Soc. 54 (2017), 713-732. (2017) Zbl1366.42018MR3640903DOI10.4134/JKMS.j150771
  32. Wang, H., Fu, Z., 10.1007/s43037-021-00120-2, Banach J. Math. Anal. 15 (2021), Article ID 36, 27 pages. (2021) Zbl1470.42027MR4216372DOI10.1007/s43037-021-00120-2
  33. Wang, H., Liao, F., 10.1007/s11401-019-0188-7, Chin. Ann. Math., Ser. B 41 (2020), 99-116. (2020) Zbl1431.42031MR4036493DOI10.1007/s11401-019-0188-7
  34. Wang, H., Liu, Z., 10.1007/s43034-020-00075-9, Ann. Funct. Anal. 11 (2020), 1108-1125. (2020) Zbl1446.42036MR4133617DOI10.1007/s43034-020-00075-9
  35. Wang, H., Xu, J., 10.1186/s13660-019-2264-7, J. Inequal. Appl. 2019 (2019), Article ID 311, 23 pages. (2019) Zbl1499.42116MR4062057DOI10.1186/s13660-019-2264-7
  36. Wang, H., Xu, J., Tan, J., 10.1007/s11464-020-0864-7, Front. Math. China 15 (2020), 1011-1034. (2020) Zbl1472.42024MR4173409DOI10.1007/s11464-020-0864-7
  37. Wang, L., 10.4134/BKMS.b191108, Bull. Korean Math. Soc. 57 (2020), 1427-1449. (2020) Zbl1462.42026MR4180187DOI10.4134/BKMS.b191108
  38. Wu, Q. Y., Fu, Z. W., 10.1007/s40840-017-0444-5, Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 635-654. (2017) Zbl1407.42009MR3620272DOI10.1007/s40840-017-0444-5
  39. Xu, J., Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. (2008) Zbl1160.46025MR2431378
  40. Yang, D., Yuan, W., Zhuo, C., 10.15352/bjma/09-4-9, Banach J. Math. Anal. 9 (2015), 146-202. (2015) Zbl1339.46040MR3336888DOI10.15352/bjma/09-4-9
  41. Yang, D., Zhuo, C., Yuan, W., 10.1016/j.jfa.2015.05.016, J. Funct. Anal. 269 (2015), 1840-1898. (2015) Zbl1342.46038MR3373435DOI10.1016/j.jfa.2015.05.016
  42. Zhao, F., Fu, Z., Lu, S., 10.1007/s13348-013-0083-6, Collect. Math. 65 (2014), 87-102. (2014) Zbl1305.26042MR3147771DOI10.1007/s13348-013-0083-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.