Cartan-Eilenberg projective, injective and flat complexes
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 1, page 151-167
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhai, Xiaorui, and Zhang, Chunxia. "Cartan-Eilenberg projective, injective and flat complexes." Czechoslovak Mathematical Journal 66.1 (2016): 151-167. <http://eudml.org/doc/276809>.
@article{Zhai2016,
abstract = {Let $R$ be an associative ring with identity and $\mathcal \{F\}$ a class of $R$-modules. In this article: we first give a detailed treatment of Cartan-Eilenberg $\mathcal \{F\}$ complexes and extend the basic properties of the class $\mathcal \{F\}$ to the class $\{\rm CE\}(\mathcal \{F\}$). Secondly, we study and give some equivalent characterizations of Cartan-Eilenberg projective, injective and flat complexes which are similar to projective, injective and flat modules, respectively. As applications, we characterize some classical rings in terms of these complexes, including coherent, Noetherian, von Neumann regular rings, $\rm QF$ rings, semisimple rings, hereditary rings and perfect rings.},
author = {Zhai, Xiaorui, Zhang, Chunxia},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cartan-Eilenberg projective complex; Cartan-Eilenberg injective complex; Cartan-Eilenberg flat complex},
language = {eng},
number = {1},
pages = {151-167},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cartan-Eilenberg projective, injective and flat complexes},
url = {http://eudml.org/doc/276809},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Zhai, Xiaorui
AU - Zhang, Chunxia
TI - Cartan-Eilenberg projective, injective and flat complexes
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 151
EP - 167
AB - Let $R$ be an associative ring with identity and $\mathcal {F}$ a class of $R$-modules. In this article: we first give a detailed treatment of Cartan-Eilenberg $\mathcal {F}$ complexes and extend the basic properties of the class $\mathcal {F}$ to the class ${\rm CE}(\mathcal {F}$). Secondly, we study and give some equivalent characterizations of Cartan-Eilenberg projective, injective and flat complexes which are similar to projective, injective and flat modules, respectively. As applications, we characterize some classical rings in terms of these complexes, including coherent, Noetherian, von Neumann regular rings, $\rm QF$ rings, semisimple rings, hereditary rings and perfect rings.
LA - eng
KW - Cartan-Eilenberg projective complex; Cartan-Eilenberg injective complex; Cartan-Eilenberg flat complex
UR - http://eudml.org/doc/276809
ER -
References
top- Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9_2, Graduate Texts in Mathematics 13 Springer, New York (1992). (1992) Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9_2
- Bass, H., 10.1090/S0002-9947-1960-0157984-8, Trans. Am. Math. Soc. 95 (1960), 466-488. (1960) MR0157984DOI10.1090/S0002-9947-1960-0157984-8
- Bennis, D., Mahdou, N., 10.1090/S0002-9939-09-10099-0, Proc. Amer. Math. Soc. 138 (2010), 461-465. (2010) Zbl1205.16007MR2557164DOI10.1090/S0002-9939-09-10099-0
- Cartan, H., Eilenberg, S., Homological Algebra, Princeton Mathematical Series 19 Princeton University Press 15, Princeton (1999). (1999) MR1731415
- Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Amer. Math. Soc. 97 (1960), 457-473. (1960) MR0120260DOI10.1090/S0002-9947-1960-0120260-3
- Cheatham, T. J., Stone, D. R., 10.1090/S0002-9939-1981-0593450-2, Proc. Am. Math. Soc. 81 (1981), 175-177. (1981) Zbl0458.16014MR0593450DOI10.1090/S0002-9939-1981-0593450-2
- Enochs, E. E., 10.1016/j.jalgebra.2011.05.011, J. Algebra 342 (2011), 16-39. (2011) Zbl1246.18005MR2824527DOI10.1016/j.jalgebra.2011.05.011
- Enochs, E. E., 10.1007/BF02760849, Isr. J. Math. 39 (1981), 189-209. (1981) Zbl0464.16019MR0636889DOI10.1007/BF02760849
- Enochs, E. E., Jenda, O. M. G., Relative Homological Algebra. Volume 1, De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2011). (2011) MR2857612
- Enochs, E. E., Rozas, J. R. García, Tensor products of complexes, Math. J. Okayama Univ. 39 (1997), 17-39. (1997) MR1680739
- Enochs, E. E., López-Ramos, J. A., Kaplansky classes, Rend. Sem. Mat. Univ. Padova 107 (2002), 67-79. (2002) Zbl1099.13019MR1926201
- Fieldhouse, D. J., 10.1007/BF02566844, Comment. Math. Helv. 46 (1971), 274-276. (1971) Zbl0219.16017MR0294408DOI10.1007/BF02566844
- Rozas, J. R. Garc{í}a, Covers and Envelopes in the Category of Complexes of Modules, Chapman & Hall/CRC Research Notes in Mathematics 407 Chapman and Hall/CRC, Boca Raton (1999). (1999) MR1693036
- Iacob, A., 10.1080/00927871003739004, Commun. Algebra 39 (2011), 1673-1685. (2011) MR2821500DOI10.1080/00927871003739004
- Rotman, J. J., An Introduction to Homological Algebra, Universitext Springer, Berlin (2009). (2009) Zbl1157.18001MR2455920
- Verdier, J.-L., Derived Categories of Abelian Categories, Astérisque 239. Société Mathématique de France Paris French (1996). (1996) MR1453167
- Wang, Z., Liu, Z., Complete cotorsion pairs in the category of complexes, Turk. J. Math. 37 (2013), 852-862. (2013) Zbl1285.18016MR3105498
- Xu, J., 10.1007/BFb0094173, Lecture Notes in Mathematics 1634 Springer, Berlin (1996). (1996) Zbl0860.16002MR1438789DOI10.1007/BFb0094173
- Yang, G., Liang, L., 10.7146/math.scand.a-16637, Math. Scand. 114 (2014), 5-25. (2014) Zbl1299.13018MR3178104DOI10.7146/math.scand.a-16637
- Yang, G., Liang, L., 10.1142/S0219498813500680, J. Algebra Appl. 13 (2014), Article ID 1350068, 17 pages. (2014) Zbl1292.16005MR3096849DOI10.1142/S0219498813500680
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.