Cartan-Eilenberg projective, injective and flat complexes

Xiaorui Zhai; Chunxia Zhang

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 151-167
  • ISSN: 0011-4642

Abstract

top
Let $R$ be an associative ring with identity and $\mathcal {F}$ a class of $R$-modules. In this article: we first give a detailed treatment of Cartan-Eilenberg $\mathcal {F}$ complexes and extend the basic properties of the class $\mathcal {F}$ to the class ${\rm CE}(\mathcal {F}$). Secondly, we study and give some equivalent characterizations of Cartan-Eilenberg projective, injective and flat complexes which are similar to projective, injective and flat modules, respectively. As applications, we characterize some classical rings in terms of these complexes, including coherent, Noetherian, von Neumann regular rings, $\rm QF$ rings, semisimple rings, hereditary rings and perfect rings.

How to cite

top

Zhai, Xiaorui, and Zhang, Chunxia. "Cartan-Eilenberg projective, injective and flat complexes." Czechoslovak Mathematical Journal 66.1 (2016): 151-167. <http://eudml.org/doc/276809>.

@article{Zhai2016,
abstract = {Let $R$ be an associative ring with identity and $\mathcal \{F\}$ a class of $R$-modules. In this article: we first give a detailed treatment of Cartan-Eilenberg $\mathcal \{F\}$ complexes and extend the basic properties of the class $\mathcal \{F\}$ to the class $\{\rm CE\}(\mathcal \{F\}$). Secondly, we study and give some equivalent characterizations of Cartan-Eilenberg projective, injective and flat complexes which are similar to projective, injective and flat modules, respectively. As applications, we characterize some classical rings in terms of these complexes, including coherent, Noetherian, von Neumann regular rings, $\rm QF$ rings, semisimple rings, hereditary rings and perfect rings.},
author = {Zhai, Xiaorui, Zhang, Chunxia},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {1},
pages = {151-167},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cartan-Eilenberg projective, injective and flat complexes},
url = {http://eudml.org/doc/276809},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Zhai, Xiaorui
AU - Zhang, Chunxia
TI - Cartan-Eilenberg projective, injective and flat complexes
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 151
EP - 167
AB - Let $R$ be an associative ring with identity and $\mathcal {F}$ a class of $R$-modules. In this article: we first give a detailed treatment of Cartan-Eilenberg $\mathcal {F}$ complexes and extend the basic properties of the class $\mathcal {F}$ to the class ${\rm CE}(\mathcal {F}$). Secondly, we study and give some equivalent characterizations of Cartan-Eilenberg projective, injective and flat complexes which are similar to projective, injective and flat modules, respectively. As applications, we characterize some classical rings in terms of these complexes, including coherent, Noetherian, von Neumann regular rings, $\rm QF$ rings, semisimple rings, hereditary rings and perfect rings.
LA - eng
UR - http://eudml.org/doc/276809
ER -

References

top
  1. Anderson, F. W., Fuller, K. R., 10.1007/978-1-4612-4418-9_2, Graduate Texts in Mathematics 13 Springer, New York (1992). (1992) Zbl0765.16001MR1245487DOI10.1007/978-1-4612-4418-9_2
  2. Bass, H., 10.1090/S0002-9947-1960-0157984-8, Trans. Am. Math. Soc. 95 (1960), 466-488. (1960) MR0157984DOI10.1090/S0002-9947-1960-0157984-8
  3. Bennis, D., Mahdou, N., 10.1090/S0002-9939-09-10099-0, Proc. Amer. Math. Soc. 138 (2010), 461-465. (2010) Zbl1205.16007MR2557164DOI10.1090/S0002-9939-09-10099-0
  4. Cartan, H., Eilenberg, S., Homological Algebra, Princeton Mathematical Series 19 Princeton University Press 15, Princeton (1999). (1999) MR1731415
  5. Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Amer. Math. Soc. 97 (1960), 457-473. (1960) MR0120260DOI10.1090/S0002-9947-1960-0120260-3
  6. Cheatham, T. J., Stone, D. R., 10.1090/S0002-9939-1981-0593450-2, Proc. Am. Math. Soc. 81 (1981), 175-177. (1981) Zbl0458.16014MR0593450DOI10.1090/S0002-9939-1981-0593450-2
  7. Enochs, E. E., 10.1016/j.jalgebra.2011.05.011, J. Algebra 342 (2011), 16-39. (2011) Zbl1246.18005MR2824527DOI10.1016/j.jalgebra.2011.05.011
  8. Enochs, E. E., 10.1007/BF02760849, Isr. J. Math. 39 (1981), 189-209. (1981) Zbl0464.16019MR0636889DOI10.1007/BF02760849
  9. Enochs, E. E., Jenda, O. M. G., Relative Homological Algebra. Volume 1, De Gruyter Expositions in Mathematics 30 Walter de Gruyter, Berlin (2011). (2011) MR2857612
  10. Enochs, E. E., Rozas, J. R. García, Tensor products of complexes, Math. J. Okayama Univ. 39 (1997), 17-39. (1997) MR1680739
  11. Enochs, E. E., López-Ramos, J. A., Kaplansky classes, Rend. Sem. Mat. Univ. Padova 107 (2002), 67-79. (2002) Zbl1099.13019MR1926201
  12. Fieldhouse, D. J., 10.1007/BF02566844, Comment. Math. Helv. 46 (1971), 274-276. (1971) Zbl0219.16017MR0294408DOI10.1007/BF02566844
  13. Rozas, J. R. Garc{í}a, Covers and Envelopes in the Category of Complexes of Modules, Chapman & Hall/CRC Research Notes in Mathematics 407 Chapman and Hall/CRC, Boca Raton (1999). (1999) MR1693036
  14. Iacob, A., 10.1080/00927871003739004, Commun. Algebra 39 (2011), 1673-1685. (2011) MR2821500DOI10.1080/00927871003739004
  15. Rotman, J. J., An Introduction to Homological Algebra, Universitext Springer, Berlin (2009). (2009) Zbl1157.18001MR2455920
  16. Verdier, J.-L., Derived Categories of Abelian Categories, Astérisque 239. Société Mathématique de France Paris French (1996). (1996) MR1453167
  17. Wang, Z., Liu, Z., Complete cotorsion pairs in the category of complexes, Turk. J. Math. 37 (2013), 852-862. (2013) Zbl1285.18016MR3105498
  18. Xu, J., 10.1007/BFb0094173, Lecture Notes in Mathematics 1634 Springer, Berlin (1996). (1996) Zbl0860.16002MR1438789DOI10.1007/BFb0094173
  19. Yang, G., Liang, L., 10.7146/math.scand.a-16637, Math. Scand. 114 (2014), 5-25. (2014) Zbl1299.13018MR3178104DOI10.7146/math.scand.a-16637
  20. Yang, G., Liang, L., 10.1142/S0219498813500680, J. Algebra Appl. 13 (2014), Article ID 1350068, 17 pages. (2014) Zbl1292.16005MR3096849DOI10.1142/S0219498813500680

NotesEmbed ?

top

You must be logged in to post comments.