Nonlinear differential polynomials sharing a non-zero polynomial with finite weight
Abhijit Banerjee; Molla Basir AHAMED
Mathematica Bohemica (2016)
- Volume: 141, Issue: 1, page 13-36
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBanerjee, Abhijit, and AHAMED, Molla Basir. "Nonlinear differential polynomials sharing a non-zero polynomial with finite weight." Mathematica Bohemica 141.1 (2016): 13-36. <http://eudml.org/doc/276810>.
@article{Banerjee2016,
abstract = {In the paper, dealing with a question of Lahiri (1999), we study the uniqueness of meromorphic functions in the case when two certain types of nonlinear differential polynomials, which are the derivatives of some typical linear expression, namely $h^\{n\}(h-1)^\{m\}$ ($h=f,g$), share a non-zero polynomial with finite weight. The results obtained in the paper improve, extend, supplement and generalize some recent results due to Sahoo (2013), Li and Gao (2010). In particular, we have shown that under a suitable choice of the sharing non-zero polynomial or when the first derivative is taken under consideration, better conclusions can be obtained.},
author = {Banerjee, Abhijit, AHAMED, Molla Basir},
journal = {Mathematica Bohemica},
keywords = {uniqueness; meromorphic function; nonlinear differential polynomial},
language = {eng},
number = {1},
pages = {13-36},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear differential polynomials sharing a non-zero polynomial with finite weight},
url = {http://eudml.org/doc/276810},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Banerjee, Abhijit
AU - AHAMED, Molla Basir
TI - Nonlinear differential polynomials sharing a non-zero polynomial with finite weight
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 1
SP - 13
EP - 36
AB - In the paper, dealing with a question of Lahiri (1999), we study the uniqueness of meromorphic functions in the case when two certain types of nonlinear differential polynomials, which are the derivatives of some typical linear expression, namely $h^{n}(h-1)^{m}$ ($h=f,g$), share a non-zero polynomial with finite weight. The results obtained in the paper improve, extend, supplement and generalize some recent results due to Sahoo (2013), Li and Gao (2010). In particular, we have shown that under a suitable choice of the sharing non-zero polynomial or when the first derivative is taken under consideration, better conclusions can be obtained.
LA - eng
KW - uniqueness; meromorphic function; nonlinear differential polynomial
UR - http://eudml.org/doc/276810
ER -
References
top- Alzahary, T. C., Yi, H. X., 10.1080/02781070410001701074, Complex Variables, Theory Appl. 49 (2004), 1063-1078. (2004) Zbl1067.30055MR2111304DOI10.1080/02781070410001701074
- Banerjee, A., 10.32917/hmj/1200529810, Hiroshima Math. J. 37 (2007), 397-408. (2007) Zbl1152.30023MR2376726DOI10.32917/hmj/1200529810
- Banerjee, A., 10.4064/ap89-3-3, Ann. Pol. Math. 89 (2006), 259-272. (2006) Zbl1104.30018MR2262553DOI10.4064/ap89-3-3
- Banerjee, A., 10.1155/IJMMS.2005.3587, Int. J. Math. Math. Sci. 2005 (2005), 3587-3598. (2005) Zbl1093.30024MR2205158DOI10.1155/IJMMS.2005.3587
- Fang, M., Qiu, H., 10.1006/jmaa.2000.7270, J. Math. Anal. Appl. 268 (2002), 426-439. (2002) Zbl1030.30028MR1896207DOI10.1006/jmaa.2000.7270
- Frank, G., Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Z. 149 German (1976), 29-36. (1976) MR0422615
- Hayman, W. K., Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford (1964). (1964) Zbl0115.06203MR0164038
- Lahiri, I., On a question of Hong Xun Yi, Arch. Math., Brno 38 (2002), 119-128. (2002) Zbl1087.30028MR1909593
- Lahiri, I., 10.1017/S0027763000027215, Nagoya Math. J. 161 (2001), 193-206. (2001) Zbl0981.30023MR1820218DOI10.1017/S0027763000027215
- Lahiri, I., 10.1080/17476930108815411, Complex Variables, Theory Appl. 46 (2001), 241-253. (2001) Zbl1025.30027MR1869738DOI10.1080/17476930108815411
- Lahiri, I., 10.4064/ap-71-2-113-128, Ann. Pol. Math. 71 (1999), 113-128. (1999) Zbl0938.30022MR1703886DOI10.4064/ap-71-2-113-128
- Lahiri, I., Dewan, S., 10.2996/kmj/1050496651, Kodai Math. J. 26 (2003), 95-100. (2003) Zbl1077.30025MR1966685DOI10.2996/kmj/1050496651
- Lahiri, I., Mandal, N., 10.1155/IJMMS.2005.1933, Int. J. Math. Math. Sci. 2005 (2005), 1933-1942. (2005) Zbl1084.30029MR2176445DOI10.1155/IJMMS.2005.1933
- Lahiri, I., Pal, R., 10.4134/BKMS.2006.43.1.161, Bull. Korean Math. Soc. 43 (2006), 161-168. (2006) MR2204868DOI10.4134/BKMS.2006.43.1.161
- Lahiri, I., Sahoo, P., Uniqueness of non-linear differential polynomials sharing 1-points, Georgian Math. J. 12 (2005), 131-138. (2005) Zbl1073.30022MR2136891
- Lahiri, I., Sarkar, A., Nonlinear differential polynomials sharing 1-points with weight two, Chin. J. Contemp. Math. 25 (2004), 325-334. (2004) Zbl1069.30051MR2159311
- Li, X.-M., Gao, L., 10.4134/BKMS.2010.47.2.319, Bull. Korean Math. Soc. 47 (2010), 319-339. (2010) Zbl1189.30066MR2650701DOI10.4134/BKMS.2010.47.2.319
- Lin, W. C., Uniqueness of differential polynomials and a problem of Lahiri, Pure Appl. Math. 17 Chinese (2001), 104-110. (2001) MR1848848
- Lin, W.-C., Yi, H.-X., Uniqueness theorems for meromorphic function, Indian J. Pure Appl. Math. 35 (2004), 121-132. (2004) Zbl1056.30031MR2040726
- Meng, C., 10.32917/hmj/1249046335, Hiroshima Math. J. 39 (2009), 163-179. (2009) Zbl1182.30051MR2543648DOI10.32917/hmj/1249046335
- Qiu, H., Fang, M., 10.4134/BKMS.2004.41.1.109, Bull. Korean Math. Soc. 41 (2004), 109-116. (2004) Zbl1134.30325MR2036806DOI10.4134/BKMS.2004.41.1.109
- Sahoo, P., 10.5666/KMJ.2013.53.2.191, Kyungpook Math. J. 53 (2013), 191-205. (2013) MR3078082DOI10.5666/KMJ.2013.53.2.191
- Sahoo, P., Uniqueness of meromorphic functions when two differential polynomials share one value , Mat. Vesn. 62 (2010), 169-182. (2010) Zbl1289.30190MR2639145
- Yamanoi, K., 10.1007/BF02392741, Acta Math. 192 (2004), 225-294. (2004) Zbl1203.30035MR2096455DOI10.1007/BF02392741
- Yang, C.-C., Hua, X., Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406. (1997) Zbl0890.30019MR1469799
- Yang, C.-C., Yi, H.-X., Uniqueness Theory of Meromorphic Functions, Mathematics and Its Applications 557 Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2003). (2003) Zbl1070.30011MR2105668
- Yi, H. X., On characteristic function of a meromorphic function and its derivative, Indian J. Math. 33 (1991), 119-133. (1991) Zbl0799.30018MR1140875
- Zhang, Q., Meromorphic function that shares one small function with its derivative, J. Inequal. Pure Appl. Math. (electronic only) 6 (2005), Article No. 116, 13 pages. (2005) Zbl1097.30033MR2178297
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.