Notes on strongly Whyburn spaces
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 1, page 123-129
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSakai, Masami. "Notes on strongly Whyburn spaces." Commentationes Mathematicae Universitatis Carolinae 57.1 (2016): 123-129. <http://eudml.org/doc/276811>.
@article{Sakai2016,
abstract = {We introduce the notion of a strongly Whyburn space, and show that a space $X$ is strongly Whyburn if and only if $X\times (\omega +1)$ is Whyburn. We also show that if $X\times Y$ is Whyburn for any Whyburn space $Y$, then $X$ is discrete.},
author = {Sakai, Masami},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Whyburn; strongly Whyburn; Fréchet-Urysohn},
language = {eng},
number = {1},
pages = {123-129},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Notes on strongly Whyburn spaces},
url = {http://eudml.org/doc/276811},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Sakai, Masami
TI - Notes on strongly Whyburn spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 1
SP - 123
EP - 129
AB - We introduce the notion of a strongly Whyburn space, and show that a space $X$ is strongly Whyburn if and only if $X\times (\omega +1)$ is Whyburn. We also show that if $X\times Y$ is Whyburn for any Whyburn space $Y$, then $X$ is discrete.
LA - eng
KW - Whyburn; strongly Whyburn; Fréchet-Urysohn
UR - http://eudml.org/doc/276811
ER -
References
top- Arhangel'skii A.V., A characterization of very -spaces, Czechoslovak Math. J. 18 (1968), 392–395. MR0229194
- Arhangel'skii A.V., Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Dokl. 33 (1986), 396–399.
- Aull C.E., Accessibility spaces, -spaces and initial topologies, Czechoslovak Math. J. 29 (1979), 178–186. MR0529506
- Bella A., Costantini C., Spadaro S., P-spaces and the Whyburn property, Houston J. Math. 37 (2011), 995–1015. MR2844462
- Bella A., Yaschenko I.V., On AP and WAP spaces, Comment. Math. Univ. Carolin. 40 (1999), 531–536. Zbl1010.54040MR1732483
- Engelking R., General Topology, revised and completed edition, Helderman Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Gillman L., Jerison M., Rings of continuous functions, reprint of the 1960 edition, Graduate Texts in Mathematics, 43, Springer, New York-Heidelberg, 1976. Zbl0327.46040MR0407579
- McMillan E.R., 10.2140/pjm.1970.32.479, Pacific J. Math. 32 (1970), 479–494. MR0257986DOI10.2140/pjm.1970.32.479
- Michael E., 10.1016/0016-660X(72)90040-2, Gen. Topology Appl. 2 (1972), 91–138. Zbl0238.54009MR0309045DOI10.1016/0016-660X(72)90040-2
- Murtinová E., 10.1016/j.topol.2007.05.022, Topology Appl. 155 (2008), 2211–2215. MR2458006DOI10.1016/j.topol.2007.05.022
- Nogura T., Tanaka Y., 10.1016/0166-8641(88)90080-6, Topology Appl. 30 (1988), 51–62. MR0964062DOI10.1016/0166-8641(88)90080-6
- Pelant J., Tkachenko M.G., Tkachuk V.V., Wilson R.G., 10.1090/S0002-9939-02-06840-5, Proc. Amer. Math. Soc. 131 (2002), 3257–3265. Zbl1028.54004MR1992867DOI10.1090/S0002-9939-02-06840-5
- Pultr A., Tozzi A., Equationally closed subframes and representations of quotient spaces, Cahiers de Topologie et Géom. Différentielle Catég. 34 (1993), 167–183. MR1239466
- Siwiec F., 10.1016/0016-660X(71)90120-6, Gen. Topology Appl. 1 (1971), 143–154. Zbl0218.54016MR0288737DOI10.1016/0016-660X(71)90120-6
- Tkachuk V.V., Yaschenko I.V., Almost closed sets and topologies they determine, Comment. Math. Univ. Carolin. 42 (2001), 395–405. Zbl1053.54004MR1832158
- Whyburn G.T., 10.1215/S0012-7094-56-02321-3, Duke Math. J. 23 (1956), 237–240. MR0098361DOI10.1215/S0012-7094-56-02321-3
- Whyburn G.T., 10.1090/S0002-9939-1970-0248722-0, Proc. Amer. Math. Soc. 24 (1970), 181–185. Zbl0197.48602MR0248722DOI10.1090/S0002-9939-1970-0248722-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.