Notes on strongly Whyburn spaces

Masami Sakai

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 1, page 123-129
  • ISSN: 0010-2628

Abstract

top
We introduce the notion of a strongly Whyburn space, and show that a space X is strongly Whyburn if and only if X × ( ω + 1 ) is Whyburn. We also show that if X × Y is Whyburn for any Whyburn space Y , then X is discrete.

How to cite

top

Sakai, Masami. "Notes on strongly Whyburn spaces." Commentationes Mathematicae Universitatis Carolinae 57.1 (2016): 123-129. <http://eudml.org/doc/276811>.

@article{Sakai2016,
abstract = {We introduce the notion of a strongly Whyburn space, and show that a space $X$ is strongly Whyburn if and only if $X\times (\omega +1)$ is Whyburn. We also show that if $X\times Y$ is Whyburn for any Whyburn space $Y$, then $X$ is discrete.},
author = {Sakai, Masami},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Whyburn; strongly Whyburn; Fréchet-Urysohn},
language = {eng},
number = {1},
pages = {123-129},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Notes on strongly Whyburn spaces},
url = {http://eudml.org/doc/276811},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Sakai, Masami
TI - Notes on strongly Whyburn spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 1
SP - 123
EP - 129
AB - We introduce the notion of a strongly Whyburn space, and show that a space $X$ is strongly Whyburn if and only if $X\times (\omega +1)$ is Whyburn. We also show that if $X\times Y$ is Whyburn for any Whyburn space $Y$, then $X$ is discrete.
LA - eng
KW - Whyburn; strongly Whyburn; Fréchet-Urysohn
UR - http://eudml.org/doc/276811
ER -

References

top
  1. Arhangel'skii A.V., A characterization of very k -spaces, Czechoslovak Math. J. 18 (1968), 392–395. MR0229194
  2. Arhangel'skii A.V., Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Dokl. 33 (1986), 396–399. 
  3. Aull C.E., Accessibility spaces, k -spaces and initial topologies, Czechoslovak Math. J. 29 (1979), 178–186. MR0529506
  4. Bella A., Costantini C., Spadaro S., P-spaces and the Whyburn property, Houston J. Math. 37 (2011), 995–1015. MR2844462
  5. Bella A., Yaschenko I.V., On AP and WAP spaces, Comment. Math. Univ. Carolin. 40 (1999), 531–536. Zbl1010.54040MR1732483
  6. Engelking R., General Topology, revised and completed edition, Helderman Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  7. Gillman L., Jerison M., Rings of continuous functions, reprint of the 1960 edition, Graduate Texts in Mathematics, 43, Springer, New York-Heidelberg, 1976. Zbl0327.46040MR0407579
  8. McMillan E.R., 10.2140/pjm.1970.32.479, Pacific J. Math. 32 (1970), 479–494. MR0257986DOI10.2140/pjm.1970.32.479
  9. Michael E., 10.1016/0016-660X(72)90040-2, Gen. Topology Appl. 2 (1972), 91–138. Zbl0238.54009MR0309045DOI10.1016/0016-660X(72)90040-2
  10. Murtinová E., 10.1016/j.topol.2007.05.022, Topology Appl. 155 (2008), 2211–2215. MR2458006DOI10.1016/j.topol.2007.05.022
  11. Nogura T., Tanaka Y., 10.1016/0166-8641(88)90080-6, Topology Appl. 30 (1988), 51–62. MR0964062DOI10.1016/0166-8641(88)90080-6
  12. Pelant J., Tkachenko M.G., Tkachuk V.V., Wilson R.G., 10.1090/S0002-9939-02-06840-5, Proc. Amer. Math. Soc. 131 (2002), 3257–3265. Zbl1028.54004MR1992867DOI10.1090/S0002-9939-02-06840-5
  13. Pultr A., Tozzi A., Equationally closed subframes and representations of quotient spaces, Cahiers de Topologie et Géom. Différentielle Catég. 34 (1993), 167–183. MR1239466
  14. Siwiec F., 10.1016/0016-660X(71)90120-6, Gen. Topology Appl. 1 (1971), 143–154. Zbl0218.54016MR0288737DOI10.1016/0016-660X(71)90120-6
  15. Tkachuk V.V., Yaschenko I.V., Almost closed sets and topologies they determine, Comment. Math. Univ. Carolin. 42 (2001), 395–405. Zbl1053.54004MR1832158
  16. Whyburn G.T., 10.1215/S0012-7094-56-02321-3, Duke Math. J. 23 (1956), 237–240. MR0098361DOI10.1215/S0012-7094-56-02321-3
  17. Whyburn G.T., 10.1090/S0002-9939-1970-0248722-0, Proc. Amer. Math. Soc. 24 (1970), 181–185. Zbl0197.48602MR0248722DOI10.1090/S0002-9939-1970-0248722-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.