Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows

Jonas Sauer

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 1, page 41-55
  • ISSN: 0011-4642

Abstract

top
We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal L p -regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group G : = n - 1 × / L to obtain an -bound for the resolvent estimate. Then, Weis’ theorem connecting -boundedness of the resolvent with maximal L p regularity of a sectorial operator applies.

How to cite

top

Sauer, Jonas. "Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows." Czechoslovak Mathematical Journal 66.1 (2016): 41-55. <http://eudml.org/doc/276818>.

@article{Sauer2016,
abstract = {We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal $L^p$-regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group $G:=\mathbb \{R\}^\{n-1\}\times \mathbb \{R\} / L \mathbb \{Z\}$ to obtain an $\mathcal \{R\}$-bound for the resolvent estimate. Then, Weis’ theorem connecting $\mathcal \{R\}$-boundedness of the resolvent with maximal $L^p$ regularity of a sectorial operator applies.},
author = {Sauer, Jonas},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stokes operator; spatially periodic problem; maximal $L^p$ regularity; nematic liquid crystal flow; quasilinear parabolic equations},
language = {eng},
number = {1},
pages = {41-55},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows},
url = {http://eudml.org/doc/276818},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Sauer, Jonas
TI - Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 41
EP - 55
AB - We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal $L^p$-regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group $G:=\mathbb {R}^{n-1}\times \mathbb {R} / L \mathbb {Z}$ to obtain an $\mathcal {R}$-bound for the resolvent estimate. Then, Weis’ theorem connecting $\mathcal {R}$-boundedness of the resolvent with maximal $L^p$ regularity of a sectorial operator applies.
LA - eng
KW - Stokes operator; spatially periodic problem; maximal $L^p$ regularity; nematic liquid crystal flow; quasilinear parabolic equations
UR - http://eudml.org/doc/276818
ER -

References

top
  1. Alfsen, E. M., 10.7146/math.scand.a-10675, Math. Scand. 12 (1963), 106-116. (1963) MR0158022DOI10.7146/math.scand.a-10675
  2. Amann, H., 10.1090/S0002-9947-1986-0814920-4, Trans. Am. Math. Soc. 293 (1986), 191-227. (1986) Zbl0635.47056MR0814920DOI10.1090/S0002-9947-1986-0814920-4
  3. Bourgain, J., Vector-valued singular integrals and the H 1 -BMO duality, Probability Theory and Harmonic Analysis. Papers from the Mini-Conf. on Probability and Harmonic Analysis, Cleveland, 1983 Pure Appl. Math. 98 Marcel Dekker, New York (1986), 1-19 W. A. Woyczy{ń}ski. (1986) MR0830227
  4. Bruhat, F., 10.24033/bsmf.1559, Bull. Soc. Math. Fr. 89 French (1961), 43-75. (1961) MR0140941DOI10.24033/bsmf.1559
  5. Burkholder, D. L., A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conf. on Harmonic Analysis in Honor of Antoni Zygmund, 1, Chicago, Ill., 1981 The Wadsworth Math. Ser. Wadsworth, Belmont (1983), 270-286 W. Beckner et al. (1983) MR0730072
  6. Cartan, H., Sur la mesure de Haar, C. R. Acad. Sci., Paris 211 French (1940), 759-762. (1940) MR0005742
  7. Clément, P., Li, S., Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl. 3 (1993/1994), 17-32. (1993) MR1287921
  8. Denk, R., Hieber, M., Prüss, J., -boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Am. Math. Soc. 166 (2003), 114 pages. (2003) MR2006641
  9. Diestel, J., Jarchow, H., Tonge, A., Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics 43 Cambridge Univ. Press, Cambridge (1995). (1995) Zbl0855.47016MR1342297
  10. Ericksen, J. L., Kinderlehrer, D., Theory and Applications of Liquid Crystals, The IMA Volumes in Mathematics and Its Applications Vol. 5, Papers from the IMA workshop, Minneapolis Institute for Mathematics and Its Applications, University of Minnesota, Springer, New York (1987). (1987) MR0900827
  11. Farwig, R., Ri, M.-H., 10.1007/s00021-006-0235-5, J. Math. Fluid Mech. 10 (2008), 352-387. (2008) Zbl1162.76322MR2430805DOI10.1007/s00021-006-0235-5
  12. Haar, A., 10.2307/1968346, Ann. Math. (2) 34 German (1933), 147-169. (1933) Zbl0006.10103MR1503103DOI10.2307/1968346
  13. Hieber, M., Nesensohn, M., Prü{ß}, J., Schade, K., Dynamics of nematic liquid crystal flows, The quasilinear approach. (2014), 11 pages ArXiv:1302.4596 [math.AP]. (2014) MR3465380
  14. Kunstmann, P. C., Weis, L., 10.1007/978-3-540-44653-8_2, Functional Analytic Methods for Evolution Equations. Autumn School on Evolution Equations and Semigroups, Levico Terme, Trento, Italy, 2001 Lecture Notes in Mathematics 1855 Springer, Berlin (2004), 65-311 M. Iannelli, et al. (2004) Zbl1097.47041MR2108959DOI10.1007/978-3-540-44653-8_2
  15. Lin, F.-H., 10.1002/cpa.3160420605, Commun. Pure Appl. Math. 42 (1989), 789-814. (1989) MR1003435DOI10.1002/cpa.3160420605
  16. Lin, F.-H., Liu, C., 10.1002/cpa.3160480503, Commun. Pure Appl. Math. 48 (1995), 501-537. (1995) MR1329830DOI10.1002/cpa.3160480503
  17. Lunardi, A., Interpolation Theory, Appunti. Scuola Normale Superiore di Pisa 9. Lecture Notes. Scuola Normale Superiore di Pisa Edizioni della Normale, Pisa (2009). (2009) Zbl1171.41001MR2523200
  18. Francia, J. L. Rubio de, Ruiz, F. J., Torrea, J. L., 10.1016/0001-8708(86)90086-1, Adv. Math. 62 (1986), 7-48. (1986) MR0859252DOI10.1016/0001-8708(86)90086-1
  19. Rudin, W., Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathematics, Vol. 12 Interscience Publishers, John Wiley, New York (1962). (1962) Zbl0107.09603MR0152834
  20. Sauer, J., 10.1007/s11565-014-0221-4, Ann. Univ. Ferrara Sez. VII Sci. Mat. 61 (2015), 333-354 DOI 10.1007/s11565-014-0221-4. (2015) Zbl1330.35342MR3421709DOI10.1007/s11565-014-0221-4
  21. Sauer, J., An extrapolation theorem in non-Euclidean geometries and its application to partial differential equations, (to appear) in J. Elliptic Parabol. Equ. 
  22. Wang, C., 10.1007/s00205-010-0343-5, Arch. Ration. Mech. Anal. 200 (2011), 1-19. (2011) Zbl1285.35085MR2781584DOI10.1007/s00205-010-0343-5
  23. Weil, A., L'intégration Dans les Groupes Topologiques et Ses Applications, Actualités Scientifiques et Industrielles 869 Hermann & Cie., Paris French (1940). (1940) MR0005741
  24. Weis, L., A new approach to maximal L p -regularity, Evolution Equations and Their Applications in Physical and Life Sciences. Proc. Bad Herrenalb Conf., Karlsruhe, 1999 Lect. Notes in Pure and Appl. Math. 215 Marcel Dekker, New York (2001), 195-214 G. Lumer et al. (2001) Zbl0981.35030MR1818002
  25. Zimmermann, F., 10.4064/sm-93-3-201-222, Stud. Math. 93 (1989), 201-222. (1989) MR1030488DOI10.4064/sm-93-3-201-222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.