Diagonals of separately continuous functions of n variables with values in strongly σ -metrizable spaces

Olena Karlova; Volodymyr Mykhaylyuk; Oleksandr Sobchuk

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 1, page 103-122
  • ISSN: 0010-2628

Abstract

top
We prove the result on Baire classification of mappings f : X × Y Z which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where X is a P P -space, Y is a topological space and Z is a strongly σ -metrizable space with additional properties. We show that for any topological space X , special equiconnected space Z and a mapping g : X Z of the ( n - 1 ) -th Baire class there exists a strongly separately continuous mapping f : X n Z with the diagonal g . For wide classes of spaces X and Z we prove that diagonals of separately continuous mappings f : X n Z are exactly the functions of the ( n - 1 ) -th Baire class. An example of equiconnected space Z and a Baire-one mapping g : [ 0 , 1 ] Z , which is not a diagonal of any separately continuous mapping f : [ 0 , 1 ] 2 Z , is constructed.

How to cite

top

Karlova, Olena, Mykhaylyuk, Volodymyr, and Sobchuk, Oleksandr. "Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma $-metrizable spaces." Commentationes Mathematicae Universitatis Carolinae 57.1 (2016): 103-122. <http://eudml.org/doc/276820>.

@article{Karlova2016,
abstract = {We prove the result on Baire classification of mappings $f:X\times Y\rightarrow Z$ which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where $X$ is a $PP$-space, $Y$ is a topological space and $Z$ is a strongly $\sigma $-metrizable space with additional properties. We show that for any topological space $X$, special equiconnected space $Z$ and a mapping $g:X\rightarrow Z$ of the $(n-1)$-th Baire class there exists a strongly separately continuous mapping $f:X^n\rightarrow Z$ with the diagonal $g$. For wide classes of spaces $X$ and $Z$ we prove that diagonals of separately continuous mappings $f:X^n\rightarrow Z$ are exactly the functions of the $(n-1)$-th Baire class. An example of equiconnected space $Z$ and a Baire-one mapping $g:[0,1]\rightarrow Z$, which is not a diagonal of any separately continuous mapping $f:[0,1]^2\rightarrow Z$, is constructed.},
author = {Karlova, Olena, Mykhaylyuk, Volodymyr, Sobchuk, Oleksandr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {diagonal of a mapping; separately continuous mapping; Baire-one mapping; equiconnected space; strongly $\sigma $-metrizable space},
language = {eng},
number = {1},
pages = {103-122},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma $-metrizable spaces},
url = {http://eudml.org/doc/276820},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Karlova, Olena
AU - Mykhaylyuk, Volodymyr
AU - Sobchuk, Oleksandr
TI - Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma $-metrizable spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 1
SP - 103
EP - 122
AB - We prove the result on Baire classification of mappings $f:X\times Y\rightarrow Z$ which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where $X$ is a $PP$-space, $Y$ is a topological space and $Z$ is a strongly $\sigma $-metrizable space with additional properties. We show that for any topological space $X$, special equiconnected space $Z$ and a mapping $g:X\rightarrow Z$ of the $(n-1)$-th Baire class there exists a strongly separately continuous mapping $f:X^n\rightarrow Z$ with the diagonal $g$. For wide classes of spaces $X$ and $Z$ we prove that diagonals of separately continuous mappings $f:X^n\rightarrow Z$ are exactly the functions of the $(n-1)$-th Baire class. An example of equiconnected space $Z$ and a Baire-one mapping $g:[0,1]\rightarrow Z$, which is not a diagonal of any separately continuous mapping $f:[0,1]^2\rightarrow Z$, is constructed.
LA - eng
KW - diagonal of a mapping; separately continuous mapping; Baire-one mapping; equiconnected space; strongly $\sigma $-metrizable space
UR - http://eudml.org/doc/276820
ER -

References

top
  1. Baire R., Sur les fonctions de variables reélles, Ann. Mat. Pura Appl., ser. 3 (1899), no. 3, 1–123. 
  2. Banakh T., (Metrically) Quater-stratifable spaces and their applications in the theory of separately continuous functions, Topology Appl. 157 (2010), no. 1, 10–28. MR1968755
  3. Burke M., 10.1016/S0166-8641(02)00136-0, Topology Appl. 129 (2003), no. 1, 29–65. MR1955664DOI10.1016/S0166-8641(02)00136-0
  4. Engelking R., General Topology, revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  5. Fosgerau M., When are Borel functions Baire functions?, Fund. Math. 143 (1993), 137–152. MR1240630
  6. Hahn H., Theorie der reellen Funktionen. 1. Band, Springer, Berlin, 1921. 
  7. Hansell R.W., 10.1090/S0002-9947-1971-0288228-1, Trans. Amer. Math. Soc. 161 (1971), 145–169. MR0288228DOI10.1090/S0002-9947-1971-0288228-1
  8. Hansell R.W., 10.1090/S0002-9947-1974-0362270-7, Trans. Amer. Math. Soc. 194 (1974), 145–169. MR0362270DOI10.1090/S0002-9947-1974-0362270-7
  9. Karlova O., Maslyuchenko V., Mykhaylyuk V., 10.2478/s11533-012-0016-8, Cent. Eur. J. Math., 10 (2012), no. 3, 1042–1053. MR2902232DOI10.2478/s11533-012-0016-8
  10. Karlova O., Mykhaylyuk V., Sobchuk O., 10.1016/j.topol.2012.09.003, Topology Appl. 160 (2013), 1–8. MR2995069DOI10.1016/j.topol.2012.09.003
  11. Karlova O., Classification of separately continuous functions with values in sigma-metrizable spaces, Applied Gen. Top. 13 (2012), no. 2, 167–178. MR2998364
  12. Karlova O., 10.1016/j.topol.2015.04.014, Topology Appl. 189 (2015), 92–106. MR3342574DOI10.1016/j.topol.2015.04.014
  13. Karlova O., 10.1007/s40879-015-0076-y, Eur. J. Math., DOI: 10.1007/s40879-015-0076-y. DOI10.1007/s40879-015-0076-y
  14. Lebesgue H., Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287. 
  15. Lebesgue H., Sur les fonctions respresentables analytiquement, Journ. de Math. 2 (1905), no. 1, 139–216. 
  16. Maslyuchenko O., Maslyuchenko V., Mykhaylyuk V., Sobchuk O., Paracompactness and separately continuous mappings, General Topology in Banach Spaces, Nova Sci. Publ., Huntington, New York, 2001, pp. 147–169. MR1901542
  17. Moran W., 10.1112/jlms/s1-44.1.320, J. London. Math. Soc. 44 (1969), 320–324. MR0236346DOI10.1112/jlms/s1-44.1.320
  18. Mykhaylyuk V., Construction of separately continuous functions of n variables with the given restriction, Ukr. Math. Bull. 3 (2006), no. 3, 374–381 (in Ukrainian). MR2330679
  19. Mykhaylyuk V., Baire classification of separately continuous functions and Namioka property, Ukr. Math. Bull. 5 (2008), no. 2, 203–218 (in Ukrainian). MR2559835
  20. Mykhaylyuk V., Sobchuk O., Fotij O., Diagonals of separately continuous multivalued mappings, Mat. Stud. 39 (2013), no. 1, 93–98 (in Ukrainian). MR3099603
  21. Rudin W., Lebesgue's first theorem, Math. Analysis and Applications, Part B. Adv. in Math. Supplem. Studies, 7B (1981), 741–747. MR0634266
  22. Sobchuk O., Baire classification and Lebesgue spaces, Sci. Bull. Chernivtsi Univ. 111 (2001), 110–112 (in Ukrainian). 
  23. Sobchuk O., P P -spaces and Baire classification, Int. Conf. on Funct. Analysis and its Appl. Dedic. to the 110-th ann. of Stefan Banach (May 28-31, Lviv) (2002), p. 189. 
  24. Schaefer H., Topological Vector Spaces, Macmillan, 1966. Zbl0983.46002MR0193469
  25. Vera G., 10.1093/qmath/39.1.109, Quart. J. Math. Oxford. 39 (1988), no. 153, 109–116. MR0929799DOI10.1093/qmath/39.1.109
  26. Veselý L., Characterization of Baire-one functions between topological spaces, Acta Univ. Carol., Math. Phys. 33 (1992), no. 2, 143–156. MR1287236

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.