Diagonals of separately continuous functions of variables with values in strongly -metrizable spaces
Olena Karlova; Volodymyr Mykhaylyuk; Oleksandr Sobchuk
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 1, page 103-122
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKarlova, Olena, Mykhaylyuk, Volodymyr, and Sobchuk, Oleksandr. "Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma $-metrizable spaces." Commentationes Mathematicae Universitatis Carolinae 57.1 (2016): 103-122. <http://eudml.org/doc/276820>.
@article{Karlova2016,
abstract = {We prove the result on Baire classification of mappings $f:X\times Y\rightarrow Z$ which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where $X$ is a $PP$-space, $Y$ is a topological space and $Z$ is a strongly $\sigma $-metrizable space with additional properties. We show that for any topological space $X$, special equiconnected space $Z$ and a mapping $g:X\rightarrow Z$ of the $(n-1)$-th Baire class there exists a strongly separately continuous mapping $f:X^n\rightarrow Z$ with the diagonal $g$. For wide classes of spaces $X$ and $Z$ we prove that diagonals of separately continuous mappings $f:X^n\rightarrow Z$ are exactly the functions of the $(n-1)$-th Baire class. An example of equiconnected space $Z$ and a Baire-one mapping $g:[0,1]\rightarrow Z$, which is not a diagonal of any separately continuous mapping $f:[0,1]^2\rightarrow Z$, is constructed.},
author = {Karlova, Olena, Mykhaylyuk, Volodymyr, Sobchuk, Oleksandr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {diagonal of a mapping; separately continuous mapping; Baire-one mapping; equiconnected space; strongly $\sigma $-metrizable space},
language = {eng},
number = {1},
pages = {103-122},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma $-metrizable spaces},
url = {http://eudml.org/doc/276820},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Karlova, Olena
AU - Mykhaylyuk, Volodymyr
AU - Sobchuk, Oleksandr
TI - Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma $-metrizable spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 1
SP - 103
EP - 122
AB - We prove the result on Baire classification of mappings $f:X\times Y\rightarrow Z$ which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where $X$ is a $PP$-space, $Y$ is a topological space and $Z$ is a strongly $\sigma $-metrizable space with additional properties. We show that for any topological space $X$, special equiconnected space $Z$ and a mapping $g:X\rightarrow Z$ of the $(n-1)$-th Baire class there exists a strongly separately continuous mapping $f:X^n\rightarrow Z$ with the diagonal $g$. For wide classes of spaces $X$ and $Z$ we prove that diagonals of separately continuous mappings $f:X^n\rightarrow Z$ are exactly the functions of the $(n-1)$-th Baire class. An example of equiconnected space $Z$ and a Baire-one mapping $g:[0,1]\rightarrow Z$, which is not a diagonal of any separately continuous mapping $f:[0,1]^2\rightarrow Z$, is constructed.
LA - eng
KW - diagonal of a mapping; separately continuous mapping; Baire-one mapping; equiconnected space; strongly $\sigma $-metrizable space
UR - http://eudml.org/doc/276820
ER -
References
top- Baire R., Sur les fonctions de variables reélles, Ann. Mat. Pura Appl., ser. 3 (1899), no. 3, 1–123.
- Banakh T., (Metrically) Quater-stratifable spaces and their applications in the theory of separately continuous functions, Topology Appl. 157 (2010), no. 1, 10–28. MR1968755
- Burke M., 10.1016/S0166-8641(02)00136-0, Topology Appl. 129 (2003), no. 1, 29–65. MR1955664DOI10.1016/S0166-8641(02)00136-0
- Engelking R., General Topology, revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Fosgerau M., When are Borel functions Baire functions?, Fund. Math. 143 (1993), 137–152. MR1240630
- Hahn H., Theorie der reellen Funktionen. 1. Band, Springer, Berlin, 1921.
- Hansell R.W., 10.1090/S0002-9947-1971-0288228-1, Trans. Amer. Math. Soc. 161 (1971), 145–169. MR0288228DOI10.1090/S0002-9947-1971-0288228-1
- Hansell R.W., 10.1090/S0002-9947-1974-0362270-7, Trans. Amer. Math. Soc. 194 (1974), 145–169. MR0362270DOI10.1090/S0002-9947-1974-0362270-7
- Karlova O., Maslyuchenko V., Mykhaylyuk V., 10.2478/s11533-012-0016-8, Cent. Eur. J. Math., 10 (2012), no. 3, 1042–1053. MR2902232DOI10.2478/s11533-012-0016-8
- Karlova O., Mykhaylyuk V., Sobchuk O., 10.1016/j.topol.2012.09.003, Topology Appl. 160 (2013), 1–8. MR2995069DOI10.1016/j.topol.2012.09.003
- Karlova O., Classification of separately continuous functions with values in sigma-metrizable spaces, Applied Gen. Top. 13 (2012), no. 2, 167–178. MR2998364
- Karlova O., 10.1016/j.topol.2015.04.014, Topology Appl. 189 (2015), 92–106. MR3342574DOI10.1016/j.topol.2015.04.014
- Karlova O., 10.1007/s40879-015-0076-y, Eur. J. Math., DOI: 10.1007/s40879-015-0076-y. DOI10.1007/s40879-015-0076-y
- Lebesgue H., Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287.
- Lebesgue H., Sur les fonctions respresentables analytiquement, Journ. de Math. 2 (1905), no. 1, 139–216.
- Maslyuchenko O., Maslyuchenko V., Mykhaylyuk V., Sobchuk O., Paracompactness and separately continuous mappings, General Topology in Banach Spaces, Nova Sci. Publ., Huntington, New York, 2001, pp. 147–169. MR1901542
- Moran W., 10.1112/jlms/s1-44.1.320, J. London. Math. Soc. 44 (1969), 320–324. MR0236346DOI10.1112/jlms/s1-44.1.320
- Mykhaylyuk V., Construction of separately continuous functions of variables with the given restriction, Ukr. Math. Bull. 3 (2006), no. 3, 374–381 (in Ukrainian). MR2330679
- Mykhaylyuk V., Baire classification of separately continuous functions and Namioka property, Ukr. Math. Bull. 5 (2008), no. 2, 203–218 (in Ukrainian). MR2559835
- Mykhaylyuk V., Sobchuk O., Fotij O., Diagonals of separately continuous multivalued mappings, Mat. Stud. 39 (2013), no. 1, 93–98 (in Ukrainian). MR3099603
- Rudin W., Lebesgue's first theorem, Math. Analysis and Applications, Part B. Adv. in Math. Supplem. Studies, 7B (1981), 741–747. MR0634266
- Sobchuk O., Baire classification and Lebesgue spaces, Sci. Bull. Chernivtsi Univ. 111 (2001), 110–112 (in Ukrainian).
- Sobchuk O., -spaces and Baire classification, Int. Conf. on Funct. Analysis and its Appl. Dedic. to the 110-th ann. of Stefan Banach (May 28-31, Lviv) (2002), p. 189.
- Schaefer H., Topological Vector Spaces, Macmillan, 1966. Zbl0983.46002MR0193469
- Vera G., 10.1093/qmath/39.1.109, Quart. J. Math. Oxford. 39 (1988), no. 153, 109–116. MR0929799DOI10.1093/qmath/39.1.109
- Veselý L., Characterization of Baire-one functions between topological spaces, Acta Univ. Carol., Math. Phys. 33 (1992), no. 2, 143–156. MR1287236
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.