The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Diagonals of separately continuous functions of n variables with values in strongly σ -metrizable spaces”

Baire one functions and their sets of discontinuity

Jonald P. Fenecios, Emmanuel A. Cabral, Abraham P. Racca (2016)

Mathematica Bohemica

Similarity:

A characterization of functions in the first Baire class in terms of their sets of discontinuity is given. More precisely, a function f : is of the first Baire class if and only if for each ϵ > 0 there is a sequence of closed sets { C n } n = 1 such that D f = n = 1 C n and ω f ( C n ) < ϵ for each n where ω f ( C n ) = sup { | f ( x ) - f ( y ) | : x , y C n } and D f denotes the set of points of discontinuity of f . The proof of the main theorem is based on a recent ϵ - δ characterization of Baire class one functions as well as on a well-known theorem due to Lebesgue. Some direct applications...

Baire classes of complex L 1 -preduals

Pavel Ludvík, Jiří Spurný (2015)

Czechoslovak Mathematical Journal

Similarity:

Let X be a complex L 1 -predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire- α functions on the set ext B X * of the extreme points of the dual unit ball B X * to the whole unit ball B X * . As a corollary we show that, given α [ 1 , ω 1 ) , the intrinsic α -th Baire class of X can be identified with the space of bounded homogeneous Baire- α functions on the set ext B X * when ext B X * satisfies certain topological assumptions. The paper is intended to be a complex counterpart to...

Norm continuity of pointwise quasi-continuous mappings

Alireza Kamel Mirmostafaee (2018)

Mathematica Bohemica

Similarity:

Let X be a Baire space, Y be a compact Hausdorff space and ϕ : X C p ( Y ) be a quasi-continuous mapping. For a proximal subset H of Y × Y we will use topological games 𝒢 1 ( H ) and 𝒢 2 ( H ) on Y × Y between two players to prove that if the first player has a winning strategy in these games, then ϕ is norm continuous on a dense G δ subset of X . It follows that if Y is Valdivia compact, each quasi-continuous mapping from a Baire space X to C p ( Y ) is norm continuous on a dense G δ subset of X .

Coloring Cantor sets and resolvability of pseudocompact spaces

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let us denote by Φ ( λ , μ ) the statement that 𝔹 ( λ ) = D ( λ ) ω , i.e. the Baire space of weight λ , has a coloring with μ colors such that every homeomorphic copy of the Cantor set in 𝔹 ( λ ) picks up all the μ colors. We call a space X π -regular if it is Hausdorff and for every nonempty open set U in X there is a nonempty open set V such that V ¯ U . We recall that a space X is called feebly compact if every locally finite collection of open sets in X is finite. A Tychonov space is pseudocompact if and...

A remark on functions continuous on all lines

Luděk Zajíček (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that each linearly continuous function f on n (i.e., each function continuous on all lines) belongs to the first Baire class, which answers a problem formulated by K. C. Ciesielski and D. Miller (2016). The same result holds also for f on an arbitrary Banach space X , if f has moreover the Baire property. We also prove (extending a known finite-dimensional result) that such f on a separable X is continuous at all points outside a first category set which is also null in any usual...

Multifractal analysis of the divergence of Fourier series

Frédéric Bayart, Yanick Heurteaux (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

A famous theorem of Carleson says that, given any function f L p ( 𝕋 ) , p ( 1 , + ) , its Fourier series ( S n f ( x ) ) converges for almost every x 𝕋 . Beside this property, the series may diverge at some point, without exceeding O ( n 1 / p ) . We define the divergence index at  x as the infimum of the positive real numbers β such that S n f ( x ) = O ( n β ) and we are interested in the size of the exceptional sets E β , namely the sets of  x 𝕋 with divergence index equal to  β . We show that quasi-all functions in  L p ( 𝕋 ) have a multifractal behavior with respect to...