Retracts and Q-independence

Anna Chwastyk

Discussiones Mathematicae - General Algebra and Applications (2007)

  • Volume: 27, Issue: 2, page 235-243
  • ISSN: 1509-9415

Abstract

top
A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.

How to cite

top

Anna Chwastyk. "Retracts and Q-independence." Discussiones Mathematicae - General Algebra and Applications 27.2 (2007): 235-243. <http://eudml.org/doc/276837>.

@article{AnnaChwastyk2007,
abstract = {A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.},
author = {Anna Chwastyk},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {general algebra; term function; Q-independence; M, I, S, S₀, A₁, G-independence; t-independence; retraction; retract; Stone algebra; skeleton and set of dense element of Stone algebra; Glivenko congruence; -independence; skeleton},
language = {eng},
number = {2},
pages = {235-243},
title = {Retracts and Q-independence},
url = {http://eudml.org/doc/276837},
volume = {27},
year = {2007},
}

TY - JOUR
AU - Anna Chwastyk
TI - Retracts and Q-independence
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2007
VL - 27
IS - 2
SP - 235
EP - 243
AB - A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.
LA - eng
KW - general algebra; term function; Q-independence; M, I, S, S₀, A₁, G-independence; t-independence; retraction; retract; Stone algebra; skeleton and set of dense element of Stone algebra; Glivenko congruence; -independence; skeleton
UR - http://eudml.org/doc/276837
ER -

References

top
  1. [1] R. Balbes and Ph. Dwinger, Distributive Lattices, Univ. Missouri Press, Columbia, Miss. 1974. 
  2. [2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, The Millennium Edition 2000. Zbl0478.08001
  3. [3] C.C. Chen and G. Grätzer, Stone lattices. I: Construction theorems, Can. J. Math. 21 (1969), 884-894. Zbl0184.03303
  4. [4] A. Chwastyk and K. Głazek, Remarks on Q-independence of Stone algebras, Math. Slovaca 56 (2) (2006), 181-197. Zbl1150.06310
  5. [5] K. Głazek, General notions of independence, pp. 112-128 in 'Advances in Algebra', World Scientific, Singapore 2003. 
  6. [6] K. Głazek, Independence with respect to family of mappings in abstract algebras, Dissertationes Math. 81 (1971). Zbl0213.29601
  7. [7] K. Głazek, Some old and new problems in the independence theory, Coll. Math. 42 (1979), 127-189. Zbl0432.08001
  8. [8] K. Głazek and S. Niwczyk, A new perspective on Q-independence, General Algebra and Applications, Shaker Verlag, Aacken 2000. 
  9. [9] K. Golema-Hartman, Exchange property and t-independence, Coll. Math. 36 (1976), 181-186. Zbl0355.08008
  10. [10] G. Grätzer, A new notion of independence in universal algebras, Colloq. Math. 17 (1967), 225-234. Zbl0189.29802
  11. [11] G. Grätzer, General Lattice Theory, Academic Press, New York 1978. Zbl0436.06001
  12. [12] G. Grätzer, Universal Algebra, second edition, Springer-Verlag, New York 1979. 
  13. [13] E. Marczewski, A general scheme of the notions of independence in mathematics, Bull. Acad. Polon. Sci. (Ser. Sci. Math. Astr. Phys.) 6 (1958), 731-738. Zbl0088.03001
  14. [14] E. Marczewski, Concerning the independence in lattices, Colloq. Math. 10 (1963), 21-23. Zbl0122.25802
  15. [15] E. Marczewski, Independence in algebras of sets and Boolean algebras, Fund. Math. 48 (1960), 135-145. Zbl0149.26003
  16. [16] E. Marczewski, Independance with respect to a family of mappings, Colloq. Math. 20 (1968), 11-17. 
  17. [17] J. Płonka and W. Poguntke, T-independence in distributive lattices, Colloq. Math. 36 (1976), 171-175. Zbl0362.06014
  18. [18] J. Schmidt, Eine algebraische Äquivalenz zum Auswahlaxiom, Fund. Math. 50 (1962), 485-496. Zbl0122.24701
  19. [19] S. Świerczkowski, Topologies in free algebras, Proc. London Math. Soc. 14 (3) (1964), 566-576. Zbl0123.09902
  20. [120] G. Szász, Marczewski independence in lattices and semilattices, Colloq. Math. 10 (1963), 15-23. Zbl0118.02401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.