Retracts and Q-independence
Discussiones Mathematicae - General Algebra and Applications (2007)
- Volume: 27, Issue: 2, page 235-243
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topAnna Chwastyk. "Retracts and Q-independence." Discussiones Mathematicae - General Algebra and Applications 27.2 (2007): 235-243. <http://eudml.org/doc/276837>.
@article{AnnaChwastyk2007,
abstract = {A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.},
author = {Anna Chwastyk},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {general algebra; term function; Q-independence; M, I, S, S₀, A₁, G-independence; t-independence; retraction; retract; Stone algebra; skeleton and set of dense element of Stone algebra; Glivenko congruence; -independence; skeleton},
language = {eng},
number = {2},
pages = {235-243},
title = {Retracts and Q-independence},
url = {http://eudml.org/doc/276837},
volume = {27},
year = {2007},
}
TY - JOUR
AU - Anna Chwastyk
TI - Retracts and Q-independence
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2007
VL - 27
IS - 2
SP - 235
EP - 243
AB - A non-empty set X of a carrier A of an algebra A is called Q-independent if the equality of two term functions f and g of the algebra A on any finite system of elements a₁,a₂,...,aₙ of X implies f(p(a₁),p(a₂),...,p(aₙ)) = g(p(a₁),p(a₂),...,p(aₙ)) for any mapping p ∈ Q. An algebra B is a retract of A if B is the image of a retraction (i.e. of an idempotent endomorphism of B). We investigate Q-independent subsets of algebras which have a retraction in their set of term functions.
LA - eng
KW - general algebra; term function; Q-independence; M, I, S, S₀, A₁, G-independence; t-independence; retraction; retract; Stone algebra; skeleton and set of dense element of Stone algebra; Glivenko congruence; -independence; skeleton
UR - http://eudml.org/doc/276837
ER -
References
top- [1] R. Balbes and Ph. Dwinger, Distributive Lattices, Univ. Missouri Press, Columbia, Miss. 1974.
- [2] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, The Millennium Edition 2000. Zbl0478.08001
- [3] C.C. Chen and G. Grätzer, Stone lattices. I: Construction theorems, Can. J. Math. 21 (1969), 884-894. Zbl0184.03303
- [4] A. Chwastyk and K. Głazek, Remarks on Q-independence of Stone algebras, Math. Slovaca 56 (2) (2006), 181-197. Zbl1150.06310
- [5] K. Głazek, General notions of independence, pp. 112-128 in 'Advances in Algebra', World Scientific, Singapore 2003.
- [6] K. Głazek, Independence with respect to family of mappings in abstract algebras, Dissertationes Math. 81 (1971). Zbl0213.29601
- [7] K. Głazek, Some old and new problems in the independence theory, Coll. Math. 42 (1979), 127-189. Zbl0432.08001
- [8] K. Głazek and S. Niwczyk, A new perspective on Q-independence, General Algebra and Applications, Shaker Verlag, Aacken 2000.
- [9] K. Golema-Hartman, Exchange property and t-independence, Coll. Math. 36 (1976), 181-186. Zbl0355.08008
- [10] G. Grätzer, A new notion of independence in universal algebras, Colloq. Math. 17 (1967), 225-234. Zbl0189.29802
- [11] G. Grätzer, General Lattice Theory, Academic Press, New York 1978. Zbl0436.06001
- [12] G. Grätzer, Universal Algebra, second edition, Springer-Verlag, New York 1979.
- [13] E. Marczewski, A general scheme of the notions of independence in mathematics, Bull. Acad. Polon. Sci. (Ser. Sci. Math. Astr. Phys.) 6 (1958), 731-738. Zbl0088.03001
- [14] E. Marczewski, Concerning the independence in lattices, Colloq. Math. 10 (1963), 21-23. Zbl0122.25802
- [15] E. Marczewski, Independence in algebras of sets and Boolean algebras, Fund. Math. 48 (1960), 135-145. Zbl0149.26003
- [16] E. Marczewski, Independance with respect to a family of mappings, Colloq. Math. 20 (1968), 11-17.
- [17] J. Płonka and W. Poguntke, T-independence in distributive lattices, Colloq. Math. 36 (1976), 171-175. Zbl0362.06014
- [18] J. Schmidt, Eine algebraische Äquivalenz zum Auswahlaxiom, Fund. Math. 50 (1962), 485-496. Zbl0122.24701
- [19] S. Świerczkowski, Topologies in free algebras, Proc. London Math. Soc. 14 (3) (1964), 566-576. Zbl0123.09902
- [120] G. Szász, Marczewski independence in lattices and semilattices, Colloq. Math. 10 (1963), 15-23. Zbl0118.02401
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.