On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits
Annales Mathematicae Silesianae (2015)
- Volume: 29, Issue: 1, page 7-17
- ISSN: 0860-2107
Access Full Article
topAbstract
topHow to cite
topRoman Srzednicki. "On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits." Annales Mathematicae Silesianae 29.1 (2015): 7-17. <http://eudml.org/doc/276852>.
@article{RomanSrzednicki2015,
abstract = {We announce a new result on determining the Conley index of the Poincaré map for a time-periodic non-autonomous ordinary differential equation. The index is computed using some singular cycles related to an index pair of a small-step discretization of the equation. We indicate how the result can be applied to computer-assisted proofs of the existence of bounded and periodic solutions. We provide also some comments on computer-assisted proving in dynamics.},
author = {Roman Srzednicki},
journal = {Annales Mathematicae Silesianae},
keywords = {Poincarémap; Conley index; interval arithmetic; rigorous numerical algorithm},
language = {eng},
number = {1},
pages = {7-17},
title = {On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits},
url = {http://eudml.org/doc/276852},
volume = {29},
year = {2015},
}
TY - JOUR
AU - Roman Srzednicki
TI - On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits
JO - Annales Mathematicae Silesianae
PY - 2015
VL - 29
IS - 1
SP - 7
EP - 17
AB - We announce a new result on determining the Conley index of the Poincaré map for a time-periodic non-autonomous ordinary differential equation. The index is computed using some singular cycles related to an index pair of a small-step discretization of the equation. We indicate how the result can be applied to computer-assisted proofs of the existence of bounded and periodic solutions. We provide also some comments on computer-assisted proving in dynamics.
LA - eng
KW - Poincarémap; Conley index; interval arithmetic; rigorous numerical algorithm
UR - http://eudml.org/doc/276852
ER -
References
top- [1] Appel K., Haken W., Every planar map is four colorable. Part I: Discharging, Illinois J. Math. 21 (1977), 429–490. Zbl0387.05009
- [2] Appel K., Haken W., Koch J., Every planar map is four colorable. Part II: Reducibility, Illinois J. Math. 21 (1977), 491–567. Zbl0387.05010
- [3] Bánhelyi B., Csendes T., Garay B.M., Hatvani L., A computer-assisted proof of ∑3-chaos in the forced damped pendulum equation, SIAM J. Appl. Dyn. Syst. 7 (2008), 843–867.[Crossref] Zbl1160.70010
- [4] CAPA,
- [5] CAPD,
- [6] Capiński M.J.,Computer assisted existence proofs of Lyapunov orbits at L2 and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst. 11 (2012), 1723–1753.[Crossref] Zbl1264.37008
- [7] CHomP,
- [8] Eckmann J.-P., Koch H., Wittwer P., A computer-assisted proof of universality for area-preserving maps, Mem. Amer. Math. Soc. 47 (1984), 1–121. Zbl0528.58033
- [9] Galias Z., Computer assisted proof of chaos in the Muthuswamy-Chua memristor circuit, Nonlinear Theory Appl. IEICE 5 (2014), 309–319.
- [10] Galias Z., Tucker W., Numerical study of coexisting attractors for the Hénon map, Int. J. Bifurcation Chaos 23 (2013), no. 7, 1330025, 18 pp. Zbl1275.37023
- [11] Gidea M., Zgliczyński P., Covering relations for multidimensional dynamical systems, J. Differential Equations 202 (2004), 33–58. Zbl1061.37013
- [12] Hales T.C., A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), 1065–1185. Zbl1096.52010
- [13] Hales T.C. et al., A formal proof of the Kepler conjecture, preprint (2015),
- [14] Hass J., Schlafly R., Double bubbles minimize, Ann. of Math. (2) 151 (2000), 459–515. Zbl0970.53008
- [15] Hassard B., Zhang J., Existence of a homoclinic orbit of the Lorenz system by precise shooting, SIAM J. Math. Anal. 25 (1994), 179–196. Zbl0799.34046
- [16] Hastings S.P., Troy W.C., A shooting approach to the Lorenz equations, Bull. Amer. Math. Soc. 27 (1992), 128–131.[Crossref] Zbl0764.58023
- [17] Hickey T., Ju Q., van Emden M.H., Interval arithmetic: From principles to implementation, J. ACM 48 (2001), 1038–1068.[Crossref] Zbl1323.65047
- [18] Hutchings M., Morgan F., Ritoré M., Ros A., Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), 459–489. Zbl1009.53007
- [19] Kapela T., Simó C., Computer assisted proofs for non-symmetric planar choreographies and for stability of the Eight, Nonlinearity 20 (2007), 1241–1255.[Crossref] Zbl1115.70008
- [20] Kapela T., Zgliczyński P., The existence of simple choreographies for the N-body problem – a computer assisted proof, Nonlinearity 16 (2003), 1899–1918.[Crossref] Zbl1060.70023
- [21] Lam C.W.H., The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (1991), 305–318.[Crossref] Zbl0744.51011
- [22] Lam C.W.H., Thiel L., Swiercz S., The non-existence of finite projective planes of order 10, Canad. J. Math. 41 (1989), 1117–1123. Zbl0691.51003
- [23] Lanford O.E., III, A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 427–434.[Crossref] Zbl0487.58017
- [24] Lanford O.E., III, Computer-assisted proofs in analysis, in: Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1385–1394.
- [25] Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130–141.[Crossref]
- [26] Mann A.L., A complete proof of the Robbins conjecture, preprint (2003).
- [27] McCune W., Solution of the Robbins problem, J. Autom. Reasoning 19 (1997), 263–276.[Crossref] Zbl0883.06011
- [28] Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66–72.[Crossref] Zbl0820.58042
- [29] Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof. II: Details, Math. Comp. 67 (1998), 1023–1046.[Crossref] Zbl0913.58038
- [30] Mischaikow K., Mrozek M., Szymczak A., Chaos in the Lorenz equations: A computer assisted proof. III: Classical parameter values, J. Differential Equations 169 (2001), 17–56. Zbl0979.37015
- [31] Mischaikow K., Zgliczyński P., Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math. 1 (2001), 255–288.[Crossref] Zbl0984.65101
- [32] Mizar project,
- [33] Moeckel R., A computer-assisted proof of Saari’s conjecture for the planar three-body problem, Trans. Amer. Math. Soc. 357 (2005), 3105–3117.[Crossref] Zbl1079.70011
- [34] Mrozek M., Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990),149–178.[Crossref] Zbl0686.58034
- [35] Mrozek M., From the theorem of Ważewski to computer assisted proofs in dynamics, Banach Center Publ. 34 (1995), 105–120. Zbl0848.34032
- [36] Mrozek M., Topological invariants, multivalued maps and computer assisted proofs in dynamics, Comput. Math. Appl. 32 (1996), 83–104.[Crossref] Zbl0861.58027
- [37] Mrozek M., Index pairs algorithms, Found. Comput. Math. 6 (2006), 457–493.[Crossref] Zbl1111.37006
- [38] Mrozek M., Srzednicki R., Topological approach to rigorous numerics of chaotic dynamical systems with strong expansion, Found. Comput. Math. 10 (2010), 191–220.[Crossref] Zbl1192.65152
- [39] Mrozek M., Srzednicki R., Weilandt F., A topological approach to the algorithmic computation of the Conley index for Poincaré maps, SIAM J. Appl. Dyn. Syst. 14 (2015), 1348–1386.[Crossref] Zbl1325.65175
- [40] Mrozek M., Żelawski M., Heteroclinic connections in the Kuramoto-Sivashinsky equations, Reliab. Comput. 3 (1997), 277–285.[Crossref] Zbl0888.65091
- [41] Robertson N., Sanders D., Seymour P., Thomas R., The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2–44. Zbl0883.05056
- [42] Tucker W., The Lorenz attractor exists, C.R. Math. Acad. Sci. Paris 328 (1999), 1197–1202. Zbl0935.34050
- [43] Tucker W., A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (2002), 53–117.[Crossref] Zbl1047.37012
- [44] Wikipedia, Pentium FDIV bug,
- [45] Wilczak D., Chaos in the Kuramoto-Sivashinsky equations – a computer assisted proof, J. Differential Equations 194 (2003), 433–459. Zbl1050.37017
- [46] Wilczak D., The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof, Found. Comput. Math. 6 (2006), 495–535.[Crossref] Zbl1130.37415
- [47] Wilczak D., Zgliczyński P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem – a computer assisted proof, Comm. Math. Phys. 234 (2003), 37–75.[Crossref] Zbl1055.70005
- [48] Wilczak D., Zgliczyński P., Period doubling in the Rössler system – a computer assisted proof, Found. Comput. Math. 9 (2009), 611–649.[Crossref] Zbl1177.37083
- [49] Wilczak D., Zgliczyński P., Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced-damped pendulum, SIAM J. Appl. Dyn. Syst. 8 (2009), 1632–1663.[Crossref] Zbl1187.37115
- [50] Zgliczyński P., Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity 10 (1997), 243–252.[Crossref] Zbl0907.58048
- [51] Zgliczyński P., Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE – a computer assisted proof, Found. Comput. Math. 4 (2004), 157–185.[Crossref] Zbl1066.65105
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.