On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits

Roman Srzednicki

Annales Mathematicae Silesianae (2015)

  • Volume: 29, Issue: 1, page 7-17
  • ISSN: 0860-2107

Abstract

top
We announce a new result on determining the Conley index of the Poincaré map for a time-periodic non-autonomous ordinary differential equation. The index is computed using some singular cycles related to an index pair of a small-step discretization of the equation. We indicate how the result can be applied to computer-assisted proofs of the existence of bounded and periodic solutions. We provide also some comments on computer-assisted proving in dynamics.

How to cite

top

Roman Srzednicki. "On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits." Annales Mathematicae Silesianae 29.1 (2015): 7-17. <http://eudml.org/doc/276852>.

@article{RomanSrzednicki2015,
abstract = {We announce a new result on determining the Conley index of the Poincaré map for a time-periodic non-autonomous ordinary differential equation. The index is computed using some singular cycles related to an index pair of a small-step discretization of the equation. We indicate how the result can be applied to computer-assisted proofs of the existence of bounded and periodic solutions. We provide also some comments on computer-assisted proving in dynamics.},
author = {Roman Srzednicki},
journal = {Annales Mathematicae Silesianae},
keywords = {Poincarémap; Conley index; interval arithmetic; rigorous numerical algorithm},
language = {eng},
number = {1},
pages = {7-17},
title = {On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits},
url = {http://eudml.org/doc/276852},
volume = {29},
year = {2015},
}

TY - JOUR
AU - Roman Srzednicki
TI - On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits
JO - Annales Mathematicae Silesianae
PY - 2015
VL - 29
IS - 1
SP - 7
EP - 17
AB - We announce a new result on determining the Conley index of the Poincaré map for a time-periodic non-autonomous ordinary differential equation. The index is computed using some singular cycles related to an index pair of a small-step discretization of the equation. We indicate how the result can be applied to computer-assisted proofs of the existence of bounded and periodic solutions. We provide also some comments on computer-assisted proving in dynamics.
LA - eng
KW - Poincarémap; Conley index; interval arithmetic; rigorous numerical algorithm
UR - http://eudml.org/doc/276852
ER -

References

top
  1. [1] Appel K., Haken W., Every planar map is four colorable. Part I: Discharging, Illinois J. Math. 21 (1977), 429–490. Zbl0387.05009
  2. [2] Appel K., Haken W., Koch J., Every planar map is four colorable. Part II: Reducibility, Illinois J. Math. 21 (1977), 491–567. Zbl0387.05010
  3. [3] Bánhelyi B., Csendes T., Garay B.M., Hatvani L., A computer-assisted proof of ∑3-chaos in the forced damped pendulum equation, SIAM J. Appl. Dyn. Syst. 7 (2008), 843–867.[Crossref] Zbl1160.70010
  4. [4] CAPA,  
  5. [5] CAPD,  
  6. [6] Capiński M.J.,Computer assisted existence proofs of Lyapunov orbits at L2 and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst. 11 (2012), 1723–1753.[Crossref] Zbl1264.37008
  7. [7] CHomP,  
  8. [8] Eckmann J.-P., Koch H., Wittwer P., A computer-assisted proof of universality for area-preserving maps, Mem. Amer. Math. Soc. 47 (1984), 1–121. Zbl0528.58033
  9. [9] Galias Z., Computer assisted proof of chaos in the Muthuswamy-Chua memristor circuit, Nonlinear Theory Appl. IEICE 5 (2014), 309–319. 
  10. [10] Galias Z., Tucker W., Numerical study of coexisting attractors for the Hénon map, Int. J. Bifurcation Chaos 23 (2013), no. 7, 1330025, 18 pp. Zbl1275.37023
  11. [11] Gidea M., Zgliczyński P., Covering relations for multidimensional dynamical systems, J. Differential Equations 202 (2004), 33–58. Zbl1061.37013
  12. [12] Hales T.C., A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), 1065–1185. Zbl1096.52010
  13. [13] Hales T.C. et al., A formal proof of the Kepler conjecture, preprint (2015),  
  14. [14] Hass J., Schlafly R., Double bubbles minimize, Ann. of Math. (2) 151 (2000), 459–515. Zbl0970.53008
  15. [15] Hassard B., Zhang J., Existence of a homoclinic orbit of the Lorenz system by precise shooting, SIAM J. Math. Anal. 25 (1994), 179–196. Zbl0799.34046
  16. [16] Hastings S.P., Troy W.C., A shooting approach to the Lorenz equations, Bull. Amer. Math. Soc. 27 (1992), 128–131.[Crossref] Zbl0764.58023
  17. [17] Hickey T., Ju Q., van Emden M.H., Interval arithmetic: From principles to implementation, J. ACM 48 (2001), 1038–1068.[Crossref] Zbl1323.65047
  18. [18] Hutchings M., Morgan F., Ritoré M., Ros A., Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), 459–489. Zbl1009.53007
  19. [19] Kapela T., Simó C., Computer assisted proofs for non-symmetric planar choreographies and for stability of the Eight, Nonlinearity 20 (2007), 1241–1255.[Crossref] Zbl1115.70008
  20. [20] Kapela T., Zgliczyński P., The existence of simple choreographies for the N-body problem – a computer assisted proof, Nonlinearity 16 (2003), 1899–1918.[Crossref] Zbl1060.70023
  21. [21] Lam C.W.H., The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (1991), 305–318.[Crossref] Zbl0744.51011
  22. [22] Lam C.W.H., Thiel L., Swiercz S., The non-existence of finite projective planes of order 10, Canad. J. Math. 41 (1989), 1117–1123. Zbl0691.51003
  23. [23] Lanford O.E., III, A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 427–434.[Crossref] Zbl0487.58017
  24. [24] Lanford O.E., III, Computer-assisted proofs in analysis, in: Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1385–1394. 
  25. [25] Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130–141.[Crossref] 
  26. [26] Mann A.L., A complete proof of the Robbins conjecture, preprint (2003). 
  27. [27] McCune W., Solution of the Robbins problem, J. Autom. Reasoning 19 (1997), 263–276.[Crossref] Zbl0883.06011
  28. [28] Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66–72.[Crossref] Zbl0820.58042
  29. [29] Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof. II: Details, Math. Comp. 67 (1998), 1023–1046.[Crossref] Zbl0913.58038
  30. [30] Mischaikow K., Mrozek M., Szymczak A., Chaos in the Lorenz equations: A computer assisted proof. III: Classical parameter values, J. Differential Equations 169 (2001), 17–56. Zbl0979.37015
  31. [31] Mischaikow K., Zgliczyński P., Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math. 1 (2001), 255–288.[Crossref] Zbl0984.65101
  32. [32] Mizar project,  
  33. [33] Moeckel R., A computer-assisted proof of Saari’s conjecture for the planar three-body problem, Trans. Amer. Math. Soc. 357 (2005), 3105–3117.[Crossref] Zbl1079.70011
  34. [34] Mrozek M., Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990),149–178.[Crossref] Zbl0686.58034
  35. [35] Mrozek M., From the theorem of Ważewski to computer assisted proofs in dynamics, Banach Center Publ. 34 (1995), 105–120. Zbl0848.34032
  36. [36] Mrozek M., Topological invariants, multivalued maps and computer assisted proofs in dynamics, Comput. Math. Appl. 32 (1996), 83–104.[Crossref] Zbl0861.58027
  37. [37] Mrozek M., Index pairs algorithms, Found. Comput. Math. 6 (2006), 457–493.[Crossref] Zbl1111.37006
  38. [38] Mrozek M., Srzednicki R., Topological approach to rigorous numerics of chaotic dynamical systems with strong expansion, Found. Comput. Math. 10 (2010), 191–220.[Crossref] Zbl1192.65152
  39. [39] Mrozek M., Srzednicki R., Weilandt F., A topological approach to the algorithmic computation of the Conley index for Poincaré maps, SIAM J. Appl. Dyn. Syst. 14 (2015), 1348–1386.[Crossref] Zbl1325.65175
  40. [40] Mrozek M., Żelawski M., Heteroclinic connections in the Kuramoto-Sivashinsky equations, Reliab. Comput. 3 (1997), 277–285.[Crossref] Zbl0888.65091
  41. [41] Robertson N., Sanders D., Seymour P., Thomas R., The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2–44. Zbl0883.05056
  42. [42] Tucker W., The Lorenz attractor exists, C.R. Math. Acad. Sci. Paris 328 (1999), 1197–1202. Zbl0935.34050
  43. [43] Tucker W., A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (2002), 53–117.[Crossref] Zbl1047.37012
  44. [44] Wikipedia, Pentium FDIV bug,  
  45. [45] Wilczak D., Chaos in the Kuramoto-Sivashinsky equations – a computer assisted proof, J. Differential Equations 194 (2003), 433–459. Zbl1050.37017
  46. [46] Wilczak D., The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof, Found. Comput. Math. 6 (2006), 495–535.[Crossref] Zbl1130.37415
  47. [47] Wilczak D., Zgliczyński P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem – a computer assisted proof, Comm. Math. Phys. 234 (2003), 37–75.[Crossref] Zbl1055.70005
  48. [48] Wilczak D., Zgliczyński P., Period doubling in the Rössler system – a computer assisted proof, Found. Comput. Math. 9 (2009), 611–649.[Crossref] Zbl1177.37083
  49. [49] Wilczak D., Zgliczyński P., Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced-damped pendulum, SIAM J. Appl. Dyn. Syst. 8 (2009), 1632–1663.[Crossref] Zbl1187.37115
  50. [50] Zgliczyński P., Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity 10 (1997), 243–252.[Crossref] Zbl0907.58048
  51. [51] Zgliczyński P., Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE – a computer assisted proof, Found. Comput. Math. 4 (2004), 157–185.[Crossref] Zbl1066.65105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.