From the theorem of Ważewski to computer assisted proofs in dynamics

Marian Mrozek

Banach Center Publications (1995)

  • Volume: 34, Issue: 1, page 105-120
  • ISSN: 0137-6934

How to cite

top

Mrozek, Marian. "From the theorem of Ważewski to computer assisted proofs in dynamics." Banach Center Publications 34.1 (1995): 105-120. <http://eudml.org/doc/251314>.

@article{Mrozek1995,
author = {Mrozek, Marian},
journal = {Banach Center Publications},
keywords = {Conley index; computer-assisted proof; chaos in the Lorenz system; retract theorem of Ważewski; flow; multivalued maps; chaos},
language = {eng},
number = {1},
pages = {105-120},
title = {From the theorem of Ważewski to computer assisted proofs in dynamics},
url = {http://eudml.org/doc/251314},
volume = {34},
year = {1995},
}

TY - JOUR
AU - Mrozek, Marian
TI - From the theorem of Ważewski to computer assisted proofs in dynamics
JO - Banach Center Publications
PY - 1995
VL - 34
IS - 1
SP - 105
EP - 120
LA - eng
KW - Conley index; computer-assisted proof; chaos in the Lorenz system; retract theorem of Ważewski; flow; multivalued maps; chaos
UR - http://eudml.org/doc/251314
ER -

References

top
  1. [1] O. Aberth, Precise Numerical Analysis, William C. Brown Publishers, Dubuque, Iowa, 1988. Zbl0665.65001
  2. [2] V. Benci, A Generalization of the Conley-Index Theory, Rend. Istit. Mat. Trieste 18 (1986), 16-39. Zbl0626.58012
  3. [3] R. Churchill, Isolated invariant sets in compact metric spaces, J. Differential Equations 12 (1972), 330-352. Zbl0238.54044
  4. [4] C. Conley, On a generalization of the Morse index, in: Ordinary Differential Equations, 1971 NRL-MRC Conference, ed. L. Weiss, Academic Press, New York (1972), 27-33. 
  5. [5] C. C. Conley, Isolated invariant sets and the Morse index, CBMS no. 38, A.M.S., Providence, R.I., 1978. 
  6. [6] C. Conley, R. Easton, Isolated Invariant Sets and Isolating Blocks, in: Advances in Differential and Integral Equations, ed. J. Nohel, Studies in Applied Mathematics 5. SIAM Publications, Philadelphia (1969), 97-104. 
  7. [7] C. Conley, R. Easton, Isolated Invariant Sets and Isolating Blocks, Trans. Amer. Math. Soc. 158 (1971), 35-61. Zbl0223.58011
  8. [8] M. Degiovanni and M. Mrozek, The Conley index for maps in absence of compactness, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 75-94. Zbl0789.58066
  9. [9] R. Franzosa, Index Filtrations and the Homology Index Braid for Partially Ordered Morse Decompositions, Trans. Amer. Math. Soc. 298 (1986), 193-213. Zbl0626.58013
  10. [10] R. Franzosa, The Connection Matrix Theory for Morse Decompositions, Trans. Amer. Math. Soc. 311 (1989) 561-592. Zbl0689.58030
  11. [11] R. Franzosa, The Continuation Theory for Morse Decompositions and Connection Matrices, Trans. Amer. Math. Soc. 310 (1988), 781-803. Zbl0708.58021
  12. [12] L. Górniewicz, Topological Degree of Morphisms and its Applications to Differential Inclusions, Raccolta di Seminari del Dipartimento di Matematica dell'Universita degli Studi della Calabria, No. 5, 1983. 
  13. [13] L. Górniewicz, Homological Methods in Fixed Point Theory of Multi-valued Maps, Dissertationes Math. 129, PWN, Warszawa, 1976. Zbl0324.55002
  14. [14] A. Iserles, A. T. Peplow, A. M. Stuart, A unified approach to spurious solutions introduced by time discretization. Part I: Basic theory, SIAM J. Numer. Anal. 28 (1991), 1723-1751. Zbl0736.65050
  15. [15] T. Kaczyński and M. Mrozek, Conley index for discrete multivalued dynamical systems, Topology Appl., accepted. Zbl0843.54042
  16. [16] H. L. Kurland, The Morse Index of an Isolated Invariant Set is a Connected Simple System, J. Differential Equations 42 (1981), 234-259. Zbl0477.58029
  17. [17] H. L. Kurland, Following Homology in Singularly Perturbed Systems, J. Differential Equations 62 (1986), 1-72. Zbl0603.58038
  18. [18] Ch. McCord, K. Mischaikow and M. Mrozek, Zeta Functions, Periodic Trajectories and the Conley Index, J. Differential Equations, accepted. Zbl0833.34045
  19. [19] K. Mischaikow and M. Mrozek, Isolating neighbourhoods and Chaos, Jap. J. Ind. & Appl. Math., accepted. Zbl0840.58033
  20. [20] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc., in print. Zbl0820.58042
  21. [21] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Part II: details, preprint. Zbl0820.58042
  22. [22] J. T. Montgomery, Cohomology of Isolated Invariant Sets under Perturbation, J. Differential Equations 13 (1973), 257-299. Zbl0238.58010
  23. [23] M. Mrozek, Index pairs and the Fixed Point Index for Semidynamical Systems with Discrete Time, Fund. Math. 133 (1989), 179-194. Zbl0708.58024
  24. [24] M. Mrozek, A Cohomological Index of Conley Type for Multi-valued Admissible Flows, J. Differential Equations 84 (1990), 15-51. Zbl0703.34019
  25. [25] M. Mrozek, Leray Functor and the Cohomological Conley Index for Discrete Dynamical Systems, Trans. Amer. Math. Soc. 318 (1990), 149-178. Zbl0686.58034
  26. [26] M. Mrozek, Open index pairs, the fixed point index and rationality of zeta functions, Ergodic Theory Dynamical Systems 10 (1990), 555-564. Zbl0696.58044
  27. [27] M. Mrozek, The Morse Equation in Conley's Index Theory for Homeomorphisms, Topology Appl. 38 (1991), 45-60. Zbl0725.58022
  28. [28] M. Mrozek, The Conley index on compact ANR's is of finite type, Results Math. 18 (1990), 306-313. Zbl0723.54038
  29. [29] M. Mrozek, Shape Index and Other Indices of Conley Type for Continuous Maps on Locally Compact Metric Spaces, Fund. Math., 145 (1994), 15-37. Zbl0870.54043
  30. [30] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs in dynamics, in preparation. Zbl0861.58027
  31. [31] M. Mrozek and K. P. Rybakowski, A cohomological Conley index for maps on metric spaces, J. Differential Equations 90.1 (1991), 143-171. Zbl0721.58040
  32. [32] M. Mrozek and K. P. Rybakowski, Discretized ordinary differential equations and the Conley index, J. Dynamics Differential Equations 4 (1992), 57-63. Zbl0745.34041
  33. [33] J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynamical Systems 8 (1988), 375-393. Zbl0682.58040
  34. [34] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer-Verlag, Berlin Heidelberg 1987. Zbl0628.58006
  35. [35] T. Ważewski, Une méthode topologique de l'examen du phénomène asymptotique relativement aux équations différentielles ordinaires, Rend. Accad. Nazionale dei Lincei, Cl. Sci. fisiche, mat. e naturali, Ser. VIII, vol. III (1947), 210-215. Zbl0029.29302
  36. [36] T. Ważewski, Sur un principe topologique pour l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. 20 (1947), 279-313. Zbl0032.35001
  37. [37] T. Ważewski, Sur un méthode topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles, Proceedings of the International Congress of Mathematicians 1954, 3 (1955), 5-14. 
  38. [38] H. C. Yee, P. K. Sweby and D. F. Griffiths, Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 1. The Dynamics of Time Discretization and Its Implications for Algorithm Development in Computational Fluid Dynamics, J. Comput. Phys. 97 (1991), 249-310. Zbl0760.65087

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.