From the theorem of Ważewski to computer assisted proofs in dynamics
Banach Center Publications (1995)
- Volume: 34, Issue: 1, page 105-120
- ISSN: 0137-6934
Access Full Article
topHow to cite
topMrozek, Marian. "From the theorem of Ważewski to computer assisted proofs in dynamics." Banach Center Publications 34.1 (1995): 105-120. <http://eudml.org/doc/251314>.
@article{Mrozek1995,
author = {Mrozek, Marian},
journal = {Banach Center Publications},
keywords = {Conley index; computer-assisted proof; chaos in the Lorenz system; retract theorem of Ważewski; flow; multivalued maps; chaos},
language = {eng},
number = {1},
pages = {105-120},
title = {From the theorem of Ważewski to computer assisted proofs in dynamics},
url = {http://eudml.org/doc/251314},
volume = {34},
year = {1995},
}
TY - JOUR
AU - Mrozek, Marian
TI - From the theorem of Ważewski to computer assisted proofs in dynamics
JO - Banach Center Publications
PY - 1995
VL - 34
IS - 1
SP - 105
EP - 120
LA - eng
KW - Conley index; computer-assisted proof; chaos in the Lorenz system; retract theorem of Ważewski; flow; multivalued maps; chaos
UR - http://eudml.org/doc/251314
ER -
References
top- [1] O. Aberth, Precise Numerical Analysis, William C. Brown Publishers, Dubuque, Iowa, 1988. Zbl0665.65001
- [2] V. Benci, A Generalization of the Conley-Index Theory, Rend. Istit. Mat. Trieste 18 (1986), 16-39. Zbl0626.58012
- [3] R. Churchill, Isolated invariant sets in compact metric spaces, J. Differential Equations 12 (1972), 330-352. Zbl0238.54044
- [4] C. Conley, On a generalization of the Morse index, in: Ordinary Differential Equations, 1971 NRL-MRC Conference, ed. L. Weiss, Academic Press, New York (1972), 27-33.
- [5] C. C. Conley, Isolated invariant sets and the Morse index, CBMS no. 38, A.M.S., Providence, R.I., 1978.
- [6] C. Conley, R. Easton, Isolated Invariant Sets and Isolating Blocks, in: Advances in Differential and Integral Equations, ed. J. Nohel, Studies in Applied Mathematics 5. SIAM Publications, Philadelphia (1969), 97-104.
- [7] C. Conley, R. Easton, Isolated Invariant Sets and Isolating Blocks, Trans. Amer. Math. Soc. 158 (1971), 35-61. Zbl0223.58011
- [8] M. Degiovanni and M. Mrozek, The Conley index for maps in absence of compactness, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 75-94. Zbl0789.58066
- [9] R. Franzosa, Index Filtrations and the Homology Index Braid for Partially Ordered Morse Decompositions, Trans. Amer. Math. Soc. 298 (1986), 193-213. Zbl0626.58013
- [10] R. Franzosa, The Connection Matrix Theory for Morse Decompositions, Trans. Amer. Math. Soc. 311 (1989) 561-592. Zbl0689.58030
- [11] R. Franzosa, The Continuation Theory for Morse Decompositions and Connection Matrices, Trans. Amer. Math. Soc. 310 (1988), 781-803. Zbl0708.58021
- [12] L. Górniewicz, Topological Degree of Morphisms and its Applications to Differential Inclusions, Raccolta di Seminari del Dipartimento di Matematica dell'Universita degli Studi della Calabria, No. 5, 1983.
- [13] L. Górniewicz, Homological Methods in Fixed Point Theory of Multi-valued Maps, Dissertationes Math. 129, PWN, Warszawa, 1976. Zbl0324.55002
- [14] A. Iserles, A. T. Peplow, A. M. Stuart, A unified approach to spurious solutions introduced by time discretization. Part I: Basic theory, SIAM J. Numer. Anal. 28 (1991), 1723-1751. Zbl0736.65050
- [15] T. Kaczyński and M. Mrozek, Conley index for discrete multivalued dynamical systems, Topology Appl., accepted. Zbl0843.54042
- [16] H. L. Kurland, The Morse Index of an Isolated Invariant Set is a Connected Simple System, J. Differential Equations 42 (1981), 234-259. Zbl0477.58029
- [17] H. L. Kurland, Following Homology in Singularly Perturbed Systems, J. Differential Equations 62 (1986), 1-72. Zbl0603.58038
- [18] Ch. McCord, K. Mischaikow and M. Mrozek, Zeta Functions, Periodic Trajectories and the Conley Index, J. Differential Equations, accepted. Zbl0833.34045
- [19] K. Mischaikow and M. Mrozek, Isolating neighbourhoods and Chaos, Jap. J. Ind. & Appl. Math., accepted. Zbl0840.58033
- [20] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc., in print. Zbl0820.58042
- [21] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Part II: details, preprint. Zbl0820.58042
- [22] J. T. Montgomery, Cohomology of Isolated Invariant Sets under Perturbation, J. Differential Equations 13 (1973), 257-299. Zbl0238.58010
- [23] M. Mrozek, Index pairs and the Fixed Point Index for Semidynamical Systems with Discrete Time, Fund. Math. 133 (1989), 179-194. Zbl0708.58024
- [24] M. Mrozek, A Cohomological Index of Conley Type for Multi-valued Admissible Flows, J. Differential Equations 84 (1990), 15-51. Zbl0703.34019
- [25] M. Mrozek, Leray Functor and the Cohomological Conley Index for Discrete Dynamical Systems, Trans. Amer. Math. Soc. 318 (1990), 149-178. Zbl0686.58034
- [26] M. Mrozek, Open index pairs, the fixed point index and rationality of zeta functions, Ergodic Theory Dynamical Systems 10 (1990), 555-564. Zbl0696.58044
- [27] M. Mrozek, The Morse Equation in Conley's Index Theory for Homeomorphisms, Topology Appl. 38 (1991), 45-60. Zbl0725.58022
- [28] M. Mrozek, The Conley index on compact ANR's is of finite type, Results Math. 18 (1990), 306-313. Zbl0723.54038
- [29] M. Mrozek, Shape Index and Other Indices of Conley Type for Continuous Maps on Locally Compact Metric Spaces, Fund. Math., 145 (1994), 15-37. Zbl0870.54043
- [30] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs in dynamics, in preparation. Zbl0861.58027
- [31] M. Mrozek and K. P. Rybakowski, A cohomological Conley index for maps on metric spaces, J. Differential Equations 90.1 (1991), 143-171. Zbl0721.58040
- [32] M. Mrozek and K. P. Rybakowski, Discretized ordinary differential equations and the Conley index, J. Dynamics Differential Equations 4 (1992), 57-63. Zbl0745.34041
- [33] J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynamical Systems 8 (1988), 375-393. Zbl0682.58040
- [34] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer-Verlag, Berlin Heidelberg 1987. Zbl0628.58006
- [35] T. Ważewski, Une méthode topologique de l'examen du phénomène asymptotique relativement aux équations différentielles ordinaires, Rend. Accad. Nazionale dei Lincei, Cl. Sci. fisiche, mat. e naturali, Ser. VIII, vol. III (1947), 210-215. Zbl0029.29302
- [36] T. Ważewski, Sur un principe topologique pour l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. 20 (1947), 279-313. Zbl0032.35001
- [37] T. Ważewski, Sur un méthode topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles, Proceedings of the International Congress of Mathematicians 1954, 3 (1955), 5-14.
- [38] H. C. Yee, P. K. Sweby and D. F. Griffiths, Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 1. The Dynamics of Time Discretization and Its Implications for Algorithm Development in Computational Fluid Dynamics, J. Comput. Phys. 97 (1991), 249-310. Zbl0760.65087
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.