# Two constructions of De Morgan algebras and De Morgan quasirings

Ivan Chajda; Günther Eigenthaler

Discussiones Mathematicae - General Algebra and Applications (2009)

- Volume: 29, Issue: 2, page 169-180
- ISSN: 1509-9415

## Access Full Article

top## Abstract

top## How to cite

topIvan Chajda, and Günther Eigenthaler. "Two constructions of De Morgan algebras and De Morgan quasirings." Discussiones Mathematicae - General Algebra and Applications 29.2 (2009): 169-180. <http://eudml.org/doc/276853>.

@article{IvanChajda2009,

abstract = {De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).},

author = {Ivan Chajda, Günther Eigenthaler},

journal = {Discussiones Mathematicae - General Algebra and Applications},

keywords = {De Morgan algebra; De Morgan quasiring; D-algebra; interval algebra; Boolean element},

language = {eng},

number = {2},

pages = {169-180},

title = {Two constructions of De Morgan algebras and De Morgan quasirings},

url = {http://eudml.org/doc/276853},

volume = {29},

year = {2009},

}

TY - JOUR

AU - Ivan Chajda

AU - Günther Eigenthaler

TI - Two constructions of De Morgan algebras and De Morgan quasirings

JO - Discussiones Mathematicae - General Algebra and Applications

PY - 2009

VL - 29

IS - 2

SP - 169

EP - 180

AB - De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).

LA - eng

KW - De Morgan algebra; De Morgan quasiring; D-algebra; interval algebra; Boolean element

UR - http://eudml.org/doc/276853

ER -

## References

top- [1] Birkhoff, G.: Lattice Theory (3rd ed.), Publ. Amer. Math. Soc., Providence, R. I., 1967. Zbl0153.02501
- [2] Chajda I., Eigenthaler, G.: A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl., Sitzungsberichte Abt. II, 207] (1998), 83-94. Zbl1040.06003
- [3] Chajda, I., Eigenthaler, G.: De Morgan quasirings, Contributions to General Algebra 18] (2008), Proceedings of the Klagenfurt Conference 2007, Verlag J. Heyn, Klagenfurt, 17-21. Zbl1155.06011
- [4] Chajda, I., Kühr, J.: A note on interval MV-algebras, Math. Slovaca 56] (2006), 47-52. Zbl1164.06010
- [5] Chajda, I., Länger, H.: A common generalization of ortholattices and Boolean quasirings, Demonstratio Mathem. 15] (2007), 769-774. Zbl1160.08003
- [6] Dobbertin, H.: Note on associative Newman algebras, Algebra Universalis 9] (1979), 396-397. Zbl0445.06010
- [7] Dorninger, D., Länger, H., Mączyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30] (1977), 215-232. Zbl0879.06005
- [8] Dorninger, D., Länger, H., Mączyński, M.: Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39] (2000), 1015-1026. Zbl0967.03055
- [9] Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics over words and trees, Fundamenta Informaticae 84] (2008), 305-327. Zbl1157.03016
- [10] Dvurečenskij, A., Hyčko, M.: Algebras on subintervals of BL-algebras, pseudo-BL-algebras and bounded residuated Rl-monoids, Math. Slovaca 56] (2006), 135-144. Zbl1150.03347