Two constructions of De Morgan algebras and De Morgan quasirings
Ivan Chajda; Günther Eigenthaler
Discussiones Mathematicae - General Algebra and Applications (2009)
- Volume: 29, Issue: 2, page 169-180
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topIvan Chajda, and Günther Eigenthaler. "Two constructions of De Morgan algebras and De Morgan quasirings." Discussiones Mathematicae - General Algebra and Applications 29.2 (2009): 169-180. <http://eudml.org/doc/276853>.
@article{IvanChajda2009,
abstract = {De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).},
author = {Ivan Chajda, Günther Eigenthaler},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {De Morgan algebra; De Morgan quasiring; D-algebra; interval algebra; Boolean element},
language = {eng},
number = {2},
pages = {169-180},
title = {Two constructions of De Morgan algebras and De Morgan quasirings},
url = {http://eudml.org/doc/276853},
volume = {29},
year = {2009},
}
TY - JOUR
AU - Ivan Chajda
AU - Günther Eigenthaler
TI - Two constructions of De Morgan algebras and De Morgan quasirings
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2009
VL - 29
IS - 2
SP - 169
EP - 180
AB - De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).
LA - eng
KW - De Morgan algebra; De Morgan quasiring; D-algebra; interval algebra; Boolean element
UR - http://eudml.org/doc/276853
ER -
References
top- [1] Birkhoff, G.: Lattice Theory (3rd ed.), Publ. Amer. Math. Soc., Providence, R. I., 1967. Zbl0153.02501
- [2] Chajda I., Eigenthaler, G.: A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur. Kl., Sitzungsberichte Abt. II, 207] (1998), 83-94. Zbl1040.06003
- [3] Chajda, I., Eigenthaler, G.: De Morgan quasirings, Contributions to General Algebra 18] (2008), Proceedings of the Klagenfurt Conference 2007, Verlag J. Heyn, Klagenfurt, 17-21. Zbl1155.06011
- [4] Chajda, I., Kühr, J.: A note on interval MV-algebras, Math. Slovaca 56] (2006), 47-52. Zbl1164.06010
- [5] Chajda, I., Länger, H.: A common generalization of ortholattices and Boolean quasirings, Demonstratio Mathem. 15] (2007), 769-774. Zbl1160.08003
- [6] Dobbertin, H.: Note on associative Newman algebras, Algebra Universalis 9] (1979), 396-397. Zbl0445.06010
- [7] Dorninger, D., Länger, H., Mączyński, M.: The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30] (1977), 215-232. Zbl0879.06005
- [8] Dorninger, D., Länger, H., Mączyński, M.: Lattice properties of ring-like quantum logics, Intern. J. Theor. Phys. 39] (2000), 1015-1026. Zbl0967.03055
- [9] Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics over words and trees, Fundamenta Informaticae 84] (2008), 305-327. Zbl1157.03016
- [10] Dvurečenskij, A., Hyčko, M.: Algebras on subintervals of BL-algebras, pseudo-BL-algebras and bounded residuated Rl-monoids, Math. Slovaca 56] (2006), 135-144. Zbl1150.03347
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.